Reputation
Badges 1
25 × Eureka!I still wonder how no one noticed ... (maybe 100 unique title/series report is relatively high threshold)
DepressedChimpanzee34 something along the lines of:from multiprocessing.pool import ThreadPool p = ThreadPool() def get_last_metric(t): return t.get_last_scalar_metrics() task_scalars_list = p.map(get_last_metric, top_tasks) p.close()
We parallelized network connection as I'm assuming the delay is fetching
I think it should look something like:files { gsc { contents: """{"type": "service_account", "project_id": "ai-platform", "private_key_id": "9999", "private_key": "-----BEGIN PRIVATE KEY-----==\n-----END PRIVATE KEY-----\n", "client_email": "a@ai.iam.gserviceaccount.com", "client_id": "111", "auth_uri": "
", "token_uri": "
", "auth_provider_x509_cert_url": "
", "client_x509_cert_url": "
"}""" path: "~/gs.cred" } }
RobustRat47 are you saying updating the nvidia drivers solved the issue ?
@<1523711619815706624:profile|StrangePelican34> are you saying that after the " with
" block the task is marked completed? how is that possible? is this done manually ?
from your jupyterlab can you do:!curl
Oh no, you are absolutely correct, it is broken (I mean I have no idea why it lists Hydra, or how it got there). I will let the guys know and fix it.
Bottom line, after you clone it, please edit the installed packages and remove the "Hydra" line and replace with just "hydra-core" (no need for version).
The format is the same as "requirements.txt" and will effect the venv created by the agent
Is this a bug, or an issue with clearml not working correctly with hydra?
It might be a bug?! Hydra is fully supported, i.e. logging the state and allowing you to change the Arguments from the UI.
Is this example working as expected ?
https://github.com/allegroai/clearml/blob/master/examples/frameworks/hydra/hydra_example.py
If you're referring to the run executed by the agent, it ends after this message because my script does not get the right args and so does not know what to...
GreasyPenguin66 Nice !!!
Very cool setup, and kudos on making it work with multiple users!
Quick question, shouldn't the JUPYTERHUB_API_TOKEN env variable be enough to gain access to the server? Why did you need to add it to the 'nbserver-x.json' as well?
RoughTiger69
Apparently,
, doesnβt populate that dict with
any keys that donβt already exist in it
.
Are you saying new entries are not added to the Dict even if they are on the Task (i.e. only entries that already exist on the dict are populated ?
But you already have all the entries defined here:
https://github.com/allegroai/clearml/blob/721569bb77d89d89e5b4f32a0ed98311c4574650/examples/services/aws-autoscaler/aws_autoscaler.py#L22
Since all this is ha...
Here, I
know
the pattern is incomplete and invalid. A less advanced user might not understand what's up.
Basically like your suggestion that if the request fails while typing instead of the error popup the search bar will turn "dark red", and on the next key stroke will be "cleaned" ?
@<1523701304709353472:profile|OddShrimp85> are you trying to shut down the one running on your machine ?
UnevenDolphin73 it seems this is a UI browser limit, this means we will need to move it into the server ...
See here: https://clearml.slack.com/archives/CTK20V944/p1640247879153700?thread_ts=1640135359.125200&cid=CTK20V944
I just cloned it from the examples that are available in the SaaS console upon account creation
Ohhh! that would explain it. Maybe it is broken there?! let me check a second
How can I reproduce it?
they are just neighboring modules to the function I am importing.
So I think that is you specify the repo,, on the remote machine you will end with the code of the component sitting at the root folder of the repo, from there I assume you can import the rest, the root git path should be part of your PYTHONPATH automatically.
wdyt?
that using a βlocalβ package is not supported
I see, I think the issue is actually pulling the git repo of the second local package, is that correct ?
(assuming you add the requirement manually, with Task.add_requirements) , is that correct ?
StraightDog31 can you elaborate? where are the parameters stored? who is trying to access them, and maybe for what purpose ?
Hi @<1571308003204796416:profile|HollowPeacock58>
I'm assuming this is the arm support (i,e, you are running on new mac) fix we released in one one of the last clearml-agent versions. could you update to the latest clearml-agent?
pip3 install clearml-agent==1.6.0rc2
Once the team is happy with the logging functionality, we'll move on to remote execution and things will update.
π
While I do have the access and secret defined in clearml.conf, and even in the WebUI, I still get similar
and you have your credentials in the browser when deleting a Task ?
But how do you specify the data hyperparameter input and output models to use when the agent runs the experiment
They are autodetected if you are using Argparse / Hydra / python-fire / etc.
The first time you are running the code (either locally or with an agent), it will add the hyper parameter section for you.
That said you can also provide it as part of the clearml-task
command with --args
(btw: clearml-task --help
will list all the options, https://clear.ml/docs/...
But I am starting to wonder whether It would be easier just changing sys,path on the scripts that use the sibling libs.
that depends, how would the sibling packages get to a remote machine ?
Pycharm does get confused sometimes
Local changes are applied before installing requirements, right?
correct
Hi PungentLouse55
it depends on the trains-server version you are running.
If the trains-server >= 0.16 then you have to add "Args/" prefix. If you are running an older version, then you should not add any prefix.
(I think the GCP is already up, I'll double check)
Hi CheerfulGorilla72
see
Notice all posts on that channel are @ channel π
hmm, yes, but then this kind of a hacky solution... The original #340 was about packaging source code that was not in git... Now we want to add "data" (even if ephemeral) on to it, no?
My thinking is somehow make sure a Task can reference a "Dataset" to be downloaded before it starts by the agent ?!
So if you are using the latest clearml (i.e. +1.3) reenqueuing the pipline will automatically continue it from where it stopped.
With previous versions (which is your case, I think), you clone the pipeline Task, change the parameter and enqueue it.
(The state itself of the pipeline is stored on the Task, and when you clone it, you are cloning the state as well).
Make sense ?