Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Profile picture
PanickyMoth78
Moderator
34 Questions, 167 Answers
  Active since 10 January 2023
  Last activity 5 months ago

Reputation

0

Badges 1

166 × Eureka!
0 Votes
14 Answers
1K Views
0 Votes 14 Answers 1K Views
Hi. I have a job that processes images and creates ~5 GB of processed image files (lots of small ones). At the end - it creates a clearml.Dataset and perform...
2 years ago
0 Votes
2 Answers
1K Views
0 Votes 2 Answers 1K Views
Hi. Suppose I want to report on what my task has done by having it generate a markdown (.md) file with links to some "local" figure files. looking at the rep...
2 years ago
0 Votes
9 Answers
1K Views
0 Votes 9 Answers 1K Views
Hi. I have a question about pipelines and their generated dependency graphs. I took the code of the clearml pipeline from decorator example: https://github.c...
2 years ago
0 Votes
25 Answers
1K Views
0 Votes 25 Answers 1K Views
Autoscaler parallelization issue: I have an AWS Autoscaler set up with a resource that has a max of 3 instances assigned to the default queue I've given it a...
2 years ago
Show more results questions
0 Hi. I'M Using Clearml Agent 1.16.1 My Code Is Running A Multi-Process Pool With "Spawn" (See

Oh, cool. So would this then report the activities of the spawned processes to the same task as that of the spawning process?

5 months ago
0 Another Question On The Topic Of How A Remote Execution Of A Pipeline Kills The Calling Process (Previously Discussed

nice, so a pipeline of pipelines is sort of possible. I guess that whole script can be run as a (remote) task?

2 years ago
0 Hi. I'M Encountering A Problem With

BTW:

If I try to find the right model in the

task.models["output"]

(this time there is just one but in my code there may be several) it appears with the

(see other attached screenshot).

What would make sense here ? (I have to be honest I'm not sure).

If the model was saved with a file name (is that the trigger for auto-upload?), I think it makes sense for the model name to match the file name (not the task name), especially when there may be ...

2 years ago
0 Hi. I'M Encountering A Problem With

sort of. Though it seems like the rules for model.name can be a bit non-obvious.
I think that the first model saved gets the task name as its name and the following models take f"{task_name} - {file_name}"

2 years ago
0 Hi. I'M Encountering A Problem With

To be specific there is "model name" which is not unique , and there is model-key which is unique to the Task

not sure why the two fields don't simply match. I guess that there may be situations where file name (without the full path) may be used several times.

2 years ago
0 Hi. I'M Encountering A Problem With

anyhow - looks like the keys are simple enough to use (so I can just ignore the model names)

2 years ago
0 Hi. I Have A Job That Processes Images And Creates ~5 Gb Of Processed Image Files (Lots Of Small Ones). At The End - It Creates A

Q: is there an equivalent env var for sdk.google.storage.pool_connections/pool_maxsize ? My jobs are running remotely and not within a clearml agent at the moment so they get clearml config through env vars.

2 years ago
0 Autoscaler Parallelization Issue: I Have An Aws Autoscaler Set Up With A Resource That Has A Max Of 3 Instances Assigned To The

sys.path.insert(0, "/src/clearml_evaluation/") is actually left-over code from when I was making things run locally (perhaps prior to connecting to github repo) but I think that adding a non-existent path to the system path would be benign

2 years ago
0 Hi I'M Looking Into How Clearml Supports Datasets And Dataset Versioning And I'M A Bit Confused. Is Dataset Versioning Not Supported At All In The Non-Enterprise Or Is Versioning Available By A Different Mechanism? I See That

This idea seems to work.
I tested this for a scenario where data is periodically added to a dataset and, to "version" the steps, I create a new dataset with the old as parent:
To do so, I split a set of image files into separate folders (pets_000, pets_001, ... pets_015), each with 500 image files
I then run the code here to make the datasets.

2 years ago
0 Hi I'M Looking Into How Clearml Supports Datasets And Dataset Versioning And I'M A Bit Confused. Is Dataset Versioning Not Supported At All In The Non-Enterprise Or Is Versioning Available By A Different Mechanism? I See That

console output shows uploads of 500 files on every new dataset. The lineage is as expected, each additional upload is the same size as the previous ones (~50mb) and Dataset.get on the last dataset's ID retreives all the files from the separate parts to one local folder.
Checking the remote storage location (gs://) shows artifact zip files, each with 500 files

2 years ago
2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

Hey Alon,
See
https://clearml.slack.com/archives/CTK20V944/p1658892624753219
I was able to isolate this as a bug in clearml 1.6.3rc1 that can be reproduced outside of a task / app simply be doing get_local_copy() on a dataset with parents.

2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

TimelyPenguin76 , Could the problem be related to an error in the log of the previous step (which completed successfully)?
` 2022-07-26 04:25:56,923 - clearml.Task - INFO - Waiting to finish uploads
2022-07-26 04:26:01,447 - clearml.storage - ERROR - Failed uploading: HTTPSConnectionPool(host='storage.googleapis.com', port=443): Max retries exceeded with url: /upload/storage/v1/b/clearml-evaluation/o?uploadType=multipart (Caused by SSLError(SSLError(1, '[SSL: DECRYPTION_FAILED_OR_BAD_RECORD_M...

2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

Restarting the autoscaler, instances and a running single pipeline - I still get the same error.
clearml.utilities.locks.exceptions.LockException: [Errno 11] Resource temporarily unavailable

2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

switching back to version 1.6.2. cleared this issue (but re-introduced others for which I have been using the release candidate)

2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

now trying with added lines as Alon suggested:
` @PipelineDecorator.component(
return_values=["run_model_path", "run_info"],
cache=True,
task_type=TaskTypes.training,
repo="git@github.com:shpigi/clearml_evaluation.git",
repo_branch="main",
packages="./requirements.txt",
)
def train_image_classifier_component(
clearml_dataset,
backbone_name,
image_resize: int,
batch_size: int,
run_model_uri,
run_tb_uri,
local_data_path,
num_epochs: int,
)...

2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

Another issue, may, or may not be related.
Running another pipeline (to see if I can reproduce the issue with simple code), it looks like the autoscaler has spun down all the instances for the default queue while a component was still running.
Both the pipline view and the "All experiment" view shows the component as running.
The component's console show that last command was a docker run command

2 years ago
2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

here is the log from the failing component:
File "/root/.clearml/venvs-builds/3.8/lib/python3.8/site-packages/clearml/utilities/locks/portalocker.py", line 140, in lock fcntl.flock(file_.fileno(), flags) BlockingIOError: [Errno 11] Resource temporarily unavailable

2 years ago
0 I Started Two Pipelines (Using Aws Autoscaler In App.Clear.Ml ). The Pipelines Ran Concurrently, Using The Same Pipeline Code. Both Failed In The Same Component Half-Way Though The Pipeline Run With:

start a training task. From what I can tell from the console log, the agent hasn't actually started running the component.
This is the component code. It is a wrapper around a non-component training function
` @PipelineDecorator.component(
return_values=["run_model_path", "run_info"],
cache=True,
task_type=TaskTypes.training,
repo="git@github.com:shpigi/clearml_evaluation.git",
repo_branch="main",
packages="./requirements.txt",
)
def train_image_classifier_component(
...

2 years ago
Show more results compactanswers