Hello! integration in what sense? Training a model? Uploading a model to the hub? Something else?
Mainly logging. Huggingface's trainer has a "report_to" argument that is supported by tensorboard, wandb, comet, etc. This means that during training all of the metrics are automatically logged to the specified platform (which is very convenient). Is there anyone who has made something similar for clearml?
In the end of the day these integration are based on Callback classes. For example, this is the wandb Calback:class WandbCallback(TrainerCallback): """ A :class:
~transformers.TrainerCallbackthat sends the logs to
Weight and Biases < >`__.
"""
def __init__(self):
has_wandb = is_wandb_available()
assert has_wandb, "WandbCallback requires wandb to be installed. Run `pip install wandb`."
if has_wandb:
import wandb
self._wandb = wandb
self._initialized = False
# log outputs
self._log_model = os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})
def setup(self, args, state, model, **kwargs):
"""
Setup the optional Weights & Biases (`wandb`) integration.
One can subclass and override this method to customize the setup if needed. Find more information `here
< ` ` >`__. You can also override the following environment variables:
Environment:
WANDB_LOG_MODEL (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to log model as artifact at the end of training. Use along with
`TrainingArguments.load_best_model_at_end` to upload best model.
WANDB_WATCH (:obj:`str`, `optional` defaults to :obj:`"gradients"`):
Can be :obj:`"gradients"`, :obj:`"all"` or :obj:`"false"`. Set to :obj:`"false"` to disable gradient
logging or :obj:`"all"` to log gradients and parameters.
WANDB_PROJECT (:obj:`str`, `optional`, defaults to :obj:`"huggingface"`):
Set this to a custom string to store results in a different project.
WANDB_DISABLED (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to disable wandb entirely. Set `WANDB_DISABLED=true` to disable.
"""
if self._wandb is None:
return
self._initialized = True
if state.is_world_process_zero:
logger.info(
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
)
combined_dict = {**args.to_sanitized_dict()}
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
trial_name = state.trial_name
init_args = {}
if trial_name is not None:
run_name = trial_name
init_args["group"] = args.run_name
else:
run_name = args.run_name
if self._wandb.run is None:
self._wandb.init(
project=os.getenv("WANDB_PROJECT", "huggingface"),
name=run_name,
**init_args,
)
# add config parameters (run may have been created manually)
self._wandb.config.update(combined_dict, allow_val_change=True)
# define default x-axis (for latest wandb versions)
if getattr(self._wandb, "define_metric", None):
self._wandb.define_metric("train/global_step")
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)
# keep track of model topology and gradients, unsupported on TPU
if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
self._wandb.watch(
model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, args.logging_steps)
)
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self._wandb is None:
return
hp_search = state.is_hyper_param_search
if hp_search:
self._wandb.finish()
self._initialized = False
if not self._initialized:
self.setup(args, state, model, **kwargs)
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._wandb is None:
return
if self._log_model and self._initialized and state.is_world_process_zero:
from .trainer import Trainer
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
with tempfile.TemporaryDirectory() as temp_dir:
fake_trainer.save_model(temp_dir)
metadata = (
{
k: v
for k, v in dict(self._wandb.summary).items()
if isinstance(v, numbers.Number) and not k.startswith("_")
}
if not args.load_best_model_at_end
else {
f"eval/{args.metric_for_best_model}": state.best_metric,
"train/total_floss": state.total_flos,
}
)
artifact = self._wandb.Artifact(name=f"model-{self._wandb.run.id}", type="model", metadata=metadata)
for f in Path(temp_dir).glob("*"):
if f.is_file():
with artifact.new_file(f.name, mode="wb") as fa:
fa.write(f.read_bytes())
self._wandb.run.log_artifact(artifact)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if self._wandb is None:
return
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
logs = rewrite_logs(logs)
self._wandb.log({**logs, "train/global_step": state.global_step}) `So I'm looking for something similar for Clearml.