Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Ok, Next Question, I'Ve Got Some Training Args That I'D Like To Manually Upload And Have Them Show Up In The Attached Place, Under Configuration. It Is A Huggingface Trainingarguments Object, Which Has A To_Dict() And To_Json Function

OK, next question, I've got some training args that I'd like to manually upload and have them show up in the attached place, under Configuration. It is a HuggingFace TrainingArguments object, which has a to_dict() and to_json function

Posted 2 years ago
Votes Newest

Answers 4

So for example:
{'output_dir': 'shiba_ner_trainer', 'overwrite_output_dir': False, 'do_train': True, 'do_eval': True, 'do_predict': True, 'evaluation_strategy': 'epoch', 'prediction_loss_only': False, 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'per_gpu_train_batch_size': None, 'per_gpu_eval_batch_size': None, 'gradient_accumulation_steps': 1, 'eval_accumulation_steps': None, 'learning_rate': 0.0004, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 5000, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 0, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': 'shiba_ner_trainer', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'save_strategy': 'epoch', 'save_steps': 500, 'save_total_limit': None, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'fp16': False, 'fp16_opt_level': 'O1', 'fp16_backend': 'auto', 'fp16_full_eval': False, 'local_rank': -1, 'tpu_num_cores': None, 'tpu_metrics_debug': False, 'debug': ['underflow_overflow'], 'dataloader_drop_last': False, 'eval_steps': None, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': 'shiba_ner_trainer', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': None, 'load_best_model_at_end': True, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'ignore_data_skip': False, 'sharded_ddp': [], 'deepspeed': None, 'label_smoothing_factor': 0.0, 'adafactor': False, 'group_by_length': False, 'length_column_name': 'length', 'report_to': ['tensorboard'], 'ddp_find_unused_parameters': None, 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': False, 'resume_from_checkpoint': None, 'push_to_hub_model_id': 'shiba_ner_trainer', 'push_to_hub_organization': None, 'push_to_hub_token': None, '_n_gpu': 1, 'mp_parameters': ''}

Posted 2 years ago

Task.current_task().connect(training_args, name='hugggingface args')And you should be able to change them when launching remotely 😉
SmallDeer34 btw: "set_parameters_as_dict" will replace all the arguments (and is one way) ...

Posted 2 years ago

OK, I guess
` training_args_dict = training_args.to_dict()

Task.current_task().set_parameters_as_dict(training_args_dict) `works, but how to change the name from "General"?

Posted 2 years ago

Oh, that's neat! Thanks!

Posted 2 years ago
4 Answers
2 years ago
one year ago