There's code that strips the type hints from the component function, just think it should be applied to the helper functions too :)
Then the type hints are not removed from helper and the code immediately crashes when being run
Oh yes I see your point, that does make sense (btw removing the type hints will solve the issue)
regardless let me make sure this is solved
There's no decorator, just e.g.
def helper(foo: Optional[Any] = None):
return foo
def step_one(...):
# stuff
Then the type hints are not removed from helper and the code immediately crashes when being run
Yes. Though again, just highlighting the naming of
foo-mod
is arbitrary. The actual module simply has a folder structured with an implicit namespace:
Yep I think this is exactly why it fails detecting it, let me check that
And it’s failing on typing hints for functions passed in
pipe.add_function_step(…, helper_function=[…])
… I guess those aren’t being removed like the wrapped function step?
Can you provide the log? I think I'm missing what exactly was added into the decorator that somehow fails the Task creation
… And it’s failing on typing hints for functions passed in pipe.add_function_step(…, helper_function=[…])
… I guess those aren’t being removed like the wrapped function step?
Yes. Though again, just highlighting the naming of foo-mod
is arbitrary. The actual module simply has a folder structured with an implicit namespace:
foo/
mod/
__init__.py
# stuff
FWIW, for the time being I’m just setting the packages to all the packages the pipeline tasks sees with:
packages = get_installed_pkgs_detail()
packages = [f"{name}=={version}" if version else name for name, version in packages.values()]
packages = task.data.script.requirements.get('pip', task.data.script.requirements.get('poetry')) or packages
print(f"Task requirements:\n{packages}")
tmp_requirements_file = "tmp_reqs.txt"
with open(tmp_requirements_file, "w") as f:
f.write("\n".join(packages) if isinstance(packages, list) else packages)
# ...
pipe.add_function_step(..., packages=tmp_requirements_file)
So from foo.mod import
"translates" to foo-mod @ git+
None ..
?
We can change the project name’s of course, if there’s a suggestion/guide that will make them see past the namespace…
So a missing bit of information that I see I forgot to mention, is that we named our packages as foo-mod
in pyproject.toml
. That hyphen then get’s rewritten as foo_mod.x.y.z-distinfo
.
foo-mod @ git+
- This then looks for a module called
foo
, even though it’s just a namespaceI think this is the issue, are you using python package name spaces ?
(this is a PEP feature that is really rarely used, and I have seen break too many times)
Assuming you have fromfrom foo.mod import
what are you seeing in pip freeze ? I'd like to see if we can fix this, and better support namespaces
Alternatively, it would be good to specify both some requirements and auto-detect 🤔
I’ve tracked it down further, it seems the pigar utility does not apply any smart logic there.
The case we have is the following -
- We have a monorepo, but all modules/libs share a common namespace
foo
; so e.g. working on modulemod
, we usefrom foo.mod import …
- This then looks for a module called
foo
, even though it’s just a namespace - In the dist-info requirement, it seems any hyphen, dot, etc are swapped for an underscore, so our site-packages represents this as
foo_mod-x.y.z-distinfo
- This ends showing the available package is
foo_mod
- Specifically since
foo
is not generated, it is assumed local and dropped 🤔
I’d like to refrain from manually specifying the dependencies, since it adds a lot of overhead to extend
Exactly, it should have auto-detected the package.
How or why is this the issue?
The main issue is a missing requirement on the Task component, and this is why it is failing.
You can however manually specify package (and I'm assuming this will solve the issue), but it should have autodetected, no?
How or why is this the issue? I great something is getting lost in translation :D
On the local machine, we have all the packages needed. The code gets sent for remote execution, and all the local packages are frozen correctly with pip.
The pipeline controller task is then generated and executed remotely, and it has all the relevant packages.
Each component it launches, however, is missing the internal packages available earlier :(
I think this is the main issue, is this reproducible ? How can we test that?
It is installed on the pipeline creating the machine.
I have no idea why it did not automatically detect it 😞
And is this repo installed on the pipeline creating machine ?
Basically I'm asking how come it did not automatically detect it?
what format should I specify it
requirements.txt format e.g. ["package >= 1.2.3"]
Would this enforce that package on various components
This is a per component control, so you can have different packages / containers based on the componnent
Would it then no longer capture import statements?
This is replacing the auto detected packages, but obviously this fails to detect your internal repo package, which is the main issue here.
How is "internal package" installed, in other words can you send the pip freeze of th machine creating the pipeline ? because this is where the packages are detected (if packages are not installed you cannot infer the actual package name nor the version just from the import statement)
It is. In what format should I specify it? Would this enforce that package on various components? Would it then no longer capture import statements?
is this repo installed on the machine creating the pipeline ?
You can also manually add it here `packages={"link_to_internal_python_package",]
None
The only thing I could think of is that the output of pip freeze would be a URL?
I have no idea what’s the difference, but it does not log the internal repository 😞 If I knew why, I would be able to solve it myself… hehe
If you use this one for example, will the component have pandas as part of the requirement
None
def step_two(...):
import pandas as pd
# do stuff
If so (and it should), what's the difference, where is "internal.repo " different from pandas ?
Using the PipelineController with add_function_step
it does
not
include the “internal.repo” as a package dependency, so it crashes.
understood
And for the time being we have not used the decorators,
So how are you building the pipeline component ?