I appreciate your help @<1523701205467926528:profile|AgitatedDove14> 🙂
Came to ClearML since it had slick dashboard and showed me the info that mattered. Loved that I could share the results of each epoch so we could make sure things were headed in the correct direction.
FYI, found log_stdout
in that same setting and default for that was true
so set that to false
so it would not log all stdout & stderr
Welp, it's been a day with the new settings, and stats went up 140K for API calls 😢 ... going to check again tomorrow to see if any of that was spill over from yesterday
It was at 1.1M when I shut it down yesterday, and today it's at 1.24M
Welp, it's been a day with the new settings, and stats went up 140K for API calls
... going to check again tomorrow to see if any of that was spill over from yesterday
140K calls a day, how often are you sending scalars ? how long is it running? how many experiments are running ?
One single experiment using the code above. I have no idea how many scalars I am sending since as far as I can tell, I am not setting anything specific to define what I am sending over to ClearML, literally first time using YoloV8 or ClearML. Just using the super basic python to run.
My training is on roughly 50 classes as a subset of the Open Images Dataset for Segmentation
I did notice that the last 24 hours I dropped quite a bit, so my theory that the 140K might have some spillover from previous day might have been correct. Last 24 hours went from 1.24M to 1.32M, so about half as much as the day before, with the same training running.
I am running this on a 3090 GPU locally, just been letting it run for about two weeks now I think. Just have the one GPU, ha ha. It's at epoch 368 out of the 1,000 I have it set to cap out on ( if it does not hit the default YOLO "patience" limit of 50 before then and self terminate ).
each epoch runs about 55 minutes, and that screenshot I posted earlier kind of show the logs for the rest of the info being output, if you wanted to check that out None
Maybe ClearML is using tensorboard
in ways that I can fine tune? I saw there was a manual way if you were not using tensorboard
to send over data, but the videos I saw from your team used this solution when demoing YOLOv8 on YouTube ( there were a few collab videos your team did with theirs, so I just followed their instructions ). But my gut is telling me that might be the issue for the remaining data being sent over that I have no insight into.
each epoch runs about 55 minutes, and that screenshot I posted earlier kind of show the logs for the rest of the info being output, if you wanted to check that out
I thought you disabled the stdout log. no?
Maybe ClearML is using
tensorboard
in ways that I can fine tune? I
You can open your TB and see, every report there is logged into clearml
Ya, sorry, I meant that if you needed more info on what was being run, it was in that screenshot ( showed instances/epochs/batch size, etc ) . But yes, it's since been disabled .
Actually looking at the counts today, they've barely changed. So I think this actually fixed it, and was just that the counts are only updated daily so I needed to get 48 hours out from when I made the change to see clean results to assure no spill over counts from previous days.
I think we're good now :) Appreciate the help !!!
Math checks out that if I was generating around 140K a day, and this had been running for 9 days, it had 1.2M when I caught it . So I think the next day after I shut it down I was seeing previous days numbers before shut down added . And another 24 hours it barely changed, so ya, it was 100% the stdout logging .
In future collab community videos and sample source for YoloV8, might be worthwhile to call that out as something folks might want to turn off unless they need it :) . Like I mentioned, I had no idea it was going to do that and sent your servers over 1.4M API hits unintentionally : (
Scary to think how common that might be, could be interesting way to optimize your platform, detect excessive console logging and prompt user to confirm continued usage ( or link to docs on how to disable if they want to stop it )
I had no idea it was going to do that and sent your servers over 1.4M API hits unintentionally
Yeah, that is way too much, I think relates to the frequency it updates the console 😞
Glad I got that sorted. I was OK being a paying customer, but gettin overage charges for that console stuff would have been a bummer if we had not figured it out. Next month things should be back to normal 😉