Hi @<1724960464275771392:profile|DepravedBee82>
After
Starting Task Execution:
It will literally start the process running your code,
Can you send the full log of the Task? what is the code doing? which system is running the agent (i.e. Windows/Mac/Linux docker etc)
Hi @<1724960464275771392:profile|DepravedBee82> , can you perhaps add a simple print at the start of your code before any import?
Can you add before the Task.init
import os
print(os.environ)
I just ran with this in my local task, and all the env vars were printed to console, but in ClearML they are not in the console log. Presumably that's because it's printed before ClearML is logging?
My understanding is that on remote execution Task.init is supposed to be a no-op right?
Hmm, I'm without, no reason why it will get stuck .
Removing all the auto loggers, this can be done with
Task.init(..., auto_connect_frameworks=False)
which would disconnect all the automatic loggers (Hydra etc) off course this is for debugging purposes
Thanks for the response @<1523701205467926528:profile|AgitatedDove14> ! The code is a small FMNIST test training job written in PyTorch Lightning. On my local job (laptop GPU, Windows) it completes in ~ 5min. On the server (Linux, H100s) it just hangs at Starting Task Execution:
. Neither of these are in Docker.
I would expect to see the standard PL progress bars outputted to the console, but since nothing is outputted, so I'm not sure how to go about debugging this. I've attached the full logs for local and remote
@<1724960464275771392:profile|DepravedBee82> I just realized, the agent is Not running in docker mode, correct? (i.e. venv mode)
If this is the case how come it is running as root? (could it be is is running inside a container? how was that container spinned?)
Nope - confirmed to be running on the OS's Python environment,
okay so bare metal root is definitely not recommended.
I'm not sure how/why it get's stuck though 😞
Any chance you can run the agent as non-root?
Also maybe preferred in docker mode, so it is easier for you to control the environment of the Task
Nope - confirmed to be running on the OS's Python environment, although he said that the agent was supposed to have it's own user - looking into that now
He confirmed that it’s not inside a container. Trying to figure out why it’s running as root but would it make a difference if it was? Is it better to run the agent from a user profile?
Edit: it might be a container! Just checking now...
Will try non-root and get back to you. I’m also trying to reproduce on a different machine too
Thanks Martin - will try that and see what I can find. Really appreciate your patience with this! 🙂
I've added that flag, removed all PL loggers & callbacks and all references to Hydra, but no luck 😞
Thank you! Although it's still really weird how it was failing silently - would it be worth changing the logging level for that error somewhere?
My money is on the Redis container although comparing the logs between Kube & Docker Desktop, nothing looks out of the ordinary...
Here's what the agent was logging:
anjum.sayed@M209886 clearml-agent --debug daemon --queue default
DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.clearml.dev.mrl:443
DEBUG:urllib3.connectionpool:
"PUT /auth.login HTTP/1.1" 200 603
DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.clearml.dev.mrl:443
DEBUG:urllib3.connectionpool:
"PUT /v2.5/queues.get_all HTTP/1.1" 200 344
DEBUG:urllib3.connectionpool:
"PUT /v2.5/queues.get_all HTTP/1.1" 200 332
DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): updates.clear.ml:443
DEBUG:clearml_agent.session:Run by interpreter: C:\Users\anjum.sayed\AppData\Local\Programs\Python\Python39\python.exe
Current configuration (clearml_agent v1.8.1, location: C:\Users\anjum.sayed/clearml.conf):
----------------------
agent.worker_id =
agent.worker_name = M209886
agent.force_git_ssh_protocol = true
agent.python_binary =
agent.package_manager.type = pip
agent.package_manager.pip_version.0 = <20.2 ; python_version < '3.10'
agent.package_manager.pip_version.1 = <22.3 ; python_version >\= '3.10'
agent.package_manager.system_site_packages = false
agent.package_manager.force_upgrade = false
agent.package_manager.conda_channels.0 = pytorch
agent.package_manager.conda_channels.1 = conda-forge
agent.package_manager.conda_channels.2 = nvidia
agent.package_manager.conda_channels.3 = defaults
agent.package_manager.priority_optional_packages.0 = pygobject
agent.package_manager.torch_nightly = false
agent.package_manager.poetry_files_from_repo_working_dir = false
agent.venvs_dir = C:/Users/anjum.sayed/.clearml/venvs-builds
agent.venvs_cache.max_entries = 10
agent.venvs_cache.free_space_threshold_gb = 2.0
agent.venvs_cache.path = ~/.clearml/venvs-cache
agent.vcs_cache.enabled = true
agent.vcs_cache.path = C:/Users/anjum.sayed/.clearml/vcs-cache
agent.venv_update.enabled = false
agent.pip_download_cache.enabled = true
agent.pip_download_cache.path = C:/Users/anjum.sayed/.clearml/pip-download-cache
agent.translate_ssh = true
agent.reload_config = false
agent.docker_pip_cache = C:/Users/anjum.sayed/.clearml/pip-cache
agent.docker_apt_cache = C:/Users/anjum.sayed/.clearml/apt-cache
agent.docker_force_pull = false
agent.default_docker.image = nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04
agent.enable_task_env = false
agent.sanitize_config_printout = ****
agent.hide_docker_command_env_vars.enabled = true
agent.hide_docker_command_env_vars.parse_embedded_urls = true
agent.abort_callback_max_timeout = 1800
agent.docker_internal_mounts.sdk_cache = /clearml_agent_cache
agent.docker_internal_mounts.apt_cache = /var/cache/apt/archives
agent.docker_internal_mounts.ssh_folder = ~/.ssh
agent.docker_internal_mounts.ssh_ro_folder = /.ssh
agent.docker_internal_mounts.pip_cache = /root/.cache/pip
agent.docker_internal_mounts.poetry_cache = /root/.cache/pypoetry
agent.docker_internal_mounts.vcs_cache = /root/.clearml/vcs-cache
agent.docker_internal_mounts.venv_build = ~/.clearml/venvs-builds
agent.docker_internal_mounts.pip_download = /root/.clearml/pip-download-cache
agent.apply_environment = true
agent.apply_files = true
agent.custom_build_script =
agent.disable_task_docker_override = false
agent.git_user =
agent.git_pass = ****
agent.git_host =
agent.debug = true
agent.default_python = 3.9
agent.cuda_version = 123
agent.cudnn_version = 0
api.version = 1.5
api.verify_certificate = true
api.default_version = 1.5
api.http.max_req_size = 15728640
api.http.retries.total = 240
api.http.retries.connect = 240
api.http.retries.read = 240
api.http.retries.redirect = 240
api.http.retries.status = 240
api.http.retries.backoff_factor = 1.0
api.http.retries.backoff_max = 120.0
api.http.wait_on_maintenance_forever = true
api.http.pool_maxsize = 512
api.http.pool_connections = 512
api.http.default_method = put
api.auth.token_expiration_threshold_sec = ****
api.api_server =
api.web_server =
api.files_server =
api.credentials.access_key = 1N33K4IXUYO64HVT4S3PXVDIX4K2CS
api.credentials.secret_key = ****
api.host =
sdk.storage.cache.default_base_dir = ~/.clearml/cache
sdk.storage.cache.size.min_free_bytes = 10GB
sdk.storage.direct_access.0.url = file://*
sdk.metrics.file_history_size = 100
sdk.metrics.matplotlib_untitled_history_size = 100
sdk.metrics.images.format = JPEG
sdk.metrics.images.quality = 87
sdk.metrics.images.subsampling = 0
sdk.metrics.tensorboard_single_series_per_graph = false
sdk.network.metrics.file_upload_threads = 4
sdk.network.metrics.file_upload_starvation_warning_sec = 120
sdk.network.iteration.max_retries_on_server_error = 5
sdk.network.iteration.retry_backoff_factor_sec = 10
sdk.network.file_upload_retries = 3
sdk.aws.s3.key =
sdk.aws.s3.secret = ****
sdk.aws.s3.region =
sdk.aws.s3.use_credentials_chain = false
sdk.aws.boto3.pool_connections = 512
sdk.aws.boto3.max_multipart_concurrency = 16
sdk.aws.boto3.multipart_threshold = 8388608
sdk.aws.boto3.multipart_chunksize = 8388608
sdk.log.null_log_propagate = false
sdk.log.task_log_buffer_capacity = 66
sdk.log.disable_urllib3_info = true
sdk.development.task_reuse_time_window_in_hours = 72.0
sdk.development.vcs_repo_detect_async = true
sdk.development.store_uncommitted_code_diff = true
sdk.development.support_stopping = true
sdk.development.default_output_uri =
sdk.development.force_analyze_entire_repo = false
sdk.development.suppress_update_message = false
sdk.development.detect_with_pip_freeze = false
sdk.development.worker.report_period_sec = 2
sdk.development.worker.ping_period_sec = 30
sdk.development.worker.log_stdout = true
sdk.development.worker.report_global_mem_used = false
sdk.development.worker.report_event_flush_threshold = 100
sdk.development.worker.console_cr_flush_period = 10
sdk.apply_environment = false
sdk.apply_files = false
DEBUG:clearml_agent.commands.worker:starting resource monitor thread
Worker "M209886:0" - Listening to queues:
+----------------------------------+---------+-------+
| id | name | tags |
+----------------------------------+---------+-------+
| 3e9973e15a6048c5ae5419ea7d097f9c | default | |
+----------------------------------+---------+-------+
DEBUG:urllib3.connectionpool:
"PUT /workers.register HTTP/1.1" 200 278
Running CLEARML-AGENT daemon in background mode, writing stdout/stderr to C:\Users\ANJUM~1.SAY\AppData\Local\Temp\.clearml_agent_daemon_outg5aq488v.txt
DEBUG:urllib3.connectionpool:
"PUT /v2.5/queues.get_all HTTP/1.1" 200 337
DEBUG:urllib3.connectionpool:
"PUT /workers.get_runtime_properties HTTP/1.1" 404 371
DEBUG:urllib3.connectionpool:
"PUT /v2.14/queues.get_next_task HTTP/1.1" 200 282
.................. truncating due to Slack char limit.........
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.5/tasks.ping HTTP/1.1" 200 271
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"POST /events.add_batch HTTP/1.1" 200 315
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /workers.status_report HTTP/1.1" 200 283
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /workers.status_report HTTP/1.1" 200 283
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.5/tasks.ping HTTP/1.1" 200 271
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.14/tasks.get_all HTTP/1.1" 200 363
DEBUG:urllib3.connectionpool:
"PUT /v2.5/tasks.get_by_id HTTP/1.1" 200 3490
DEBUG:urllib3.connectionpool:
"PUT /v2.5/tasks.stopped HTTP/1.1" 200 304
INFO:clearml_agent.commands.worker:Task process terminated
INFO:clearml_agent.commands.worker:Task interrupted: stopping
DEBUG:urllib3.connectionpool:
"POST /events.add_batch HTTP/1.1" 200 315
DEBUG:urllib3.connectionpool:
"PUT /v2.5/tasks.stopped HTTP/1.1" 200 333
DEBUG:urllib3.connectionpool:
"PUT /workers.status_report HTTP/1.1" 200 283
DEBUG:urllib3.connectionpool:
"PUT /v2.5/queues.get_all HTTP/1.1" 200 337
DEBUG:urllib3.connectionpool:
"PUT /v2.14/queues.get_next_task HTTP/1.1" 200 282
DEBUG:urllib3.connectionpool:
"PUT /workers.unregister HTTP/1.1" 200 280
DEBUG:urllib3.connectionpool:
"PUT /workers.unregister HTTP/1.1" 200 280
Hi @<1523701205467926528:profile|AgitatedDove14> , I reordered the imports:
from clearml import Task
print("Before task")
task = Task.init(project_name="ClearML Testing", task_name="FMNIST")
task.set_repo(
repo="git@ssh.dev.azure.com:v3/mclarenracing/Application%20Engineering/ml-queue-test"
)
task.set_packages("requirements.txt")
print("After task")
print("Before import")
from pathlib import Path
import hydra
import lightning as L
import torch
from coolname import generate_slug
from omegaconf import DictConfig
from src.datasets import JobDataModule
from src.models import JobModel
from src.utils import LogSummaryCallback, get_num_steps, prepare_loggers_and_callbacks
for i in range(torch.cuda.device_count()):
print(torch.cuda.get_device_properties(i).name)
And here's the output:
Environment setup completed successfully
Starting Task Execution:
Before task
Still looks like it's getting stuck at Task.init
Hi @<1523701205467926528:profile|AgitatedDove14> , here's my code with some more prints:
from clearml import Task
print("Before Task.init")
task = Task.init(project_name="ClearML Testing", task_name="FMNIST")
print("Before task.set_repo")
task.set_repo(
repo="git@ssh.dev.azure.com:v3/mclarenracing/Application%20Engineering/ml-queue-test"
)
print("Before task.set_packages")
task.set_packages("requirements.txt")
print("After task")
print("Before import")
from pathlib import Path
import hydra
import lightning as L
import torch
from coolname import generate_slug
from omegaconf import DictConfig
from src.datasets import JobDataModule
from src.models import JobModel
from src.utils import LogSummaryCallback, get_num_steps, prepare_loggers_and_callbacks
print("After import")
I've attached the full log (using RC2). Still getting stuck at Task.init
- very weird
Ah yes you were right, it does still print on remote. Here you go:
environ({'LANG': 'en_GB.UTF-8', 'PATH': '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin', 'HOME': '/root', 'LOGNAME': 'root', 'USER': 'root', 'SHELL': '/bin/bash', 'INVOCATION_ID': '2cf51dc43b78470cb14c29f5f653ee18', 'JOURNAL_STREAM': '8:224108', 'SYSTEMD_EXEC_PID': '134947', 'PYTHONUNBUFFERED': '1', 'CUDA_DEVICE_ORDER': 'PCI_BUS_ID', 'CLEARML_WORKER_ID': 'mrl-plswh100:0', 'TRAINS_WORKER_ID': 'mrl-plswh100:0', 'CLEARML_CONFIG_FILE': '/tmp/.clearml_agent.vw6k62pq.cfg', 'TRAINS_CONFIG_FILE': '/tmp/.clearml_agent.vw6k62pq.cfg', 'CLEARML_TASK_ID': 'b0abe1da01bd4539a8e06699141c893a', 'TRAINS_TASK_ID': 'b0abe1da01bd4539a8e06699141c893a', 'CLEARML_LOG_LEVEL': 'INFO', 'TRAINS_LOG_LEVEL': 'INFO', 'CLEARML_LOG_TASK_TO_BACKEND': '0', 'TRAINS_LOG_TASK_TO_BACKEND': '0', 'PYTHONPATH': '/root/.clearml/venvs-builds/3.9/task_repository/ml-queue-test:/root/.clearml/venvs-builds/3.9/task_repository/ml-queue-test::/usr/lib64/python39.zip:/usr/lib64/python3.9:/usr/lib64/python3.9/lib-dynload:/root/.clearml/venvs-builds/3.9/lib64/python3.9/site-packages:/root/.clearml/venvs-builds/3.9/lib/python3.9/site-packages'})
I managed to set up my (Windows) laptop as a worker and reproduce the issue.
Any insight on how we can reproduce the issue?
It’s a Dell XE9680 rack server with 8xH100s which is located in our office, running AlmaOS. We have successfully run training jobs on it inside Docker (without ClearML) which work fine (will check with my team if we’ve got something to train without Docker). I’ve also tried different Python versions; 3.9 (Alma default) and 3.11 which you can see in the log above. It’s a really bizarre issue and outside of print statements I’m not really sure where to look.
You mentioned sync argparser & reporting, so I’ll try removing Hydra to rule that out, and other loggers in PL and see from there …
This is exactly my problem, too, which I described above! If you find any solution, would be glad if you could share. 🙂 Of course, I also share mine when I get one.
This is so odd,
could you add prints right after the Task.init?
Also could you verify it still gets stuck with the latest RC
clearml==1.16.3rc2
Okay I have an idea, it could be a lock that another agent/user is holding on the cache folder or similar
Let me check something
Sorry, on the remote machine (i.e. enqueue it and let the agent run it), this will also log the print 🙂
confirmed that the change had been added by
Make sure you see them in the Task log in the UI (the agent print it when it starts)
Any insight on how we can reproduce the issue?
Can this be reproducible using a simple script that we can also run?