
Reputation
Badges 1
979 × Eureka!yes -> but I still don't understand why the post_packages didn't work, could be worth investigating
Hoo I found:user@trains-agent-1: ps -ax 5199 ? Sl 29:25 python3 -m trains_agent --config-file ~/trains.conf daemon --queue default --log-level DEBUG --detached 6096 ? Sl 30:04 python3 -m trains_agent --config-file ~/trains.conf daemon --queue default --log-level DEBUG --detached
trains-agent-1: runs an experiment for a long time (>12h). Picks a new experiment on top of the long one running trains-agent-2: runs only one experiment at a time, normal trains-agent-3: runs only one experiment at a time, normalIn total: 4 experiments running for 3 agents
This is consistent: Each time I send a new task on the default queue, if trains-agent-1 has only one task running (the long one), it will pick another one. If I add one more experiment in the queue at that point (trains-agent-1 running two experiments at the same time), that experiment will stay in queue (trains-agent-2 and trains-agent-3 will not pick it because they also are running experiments)
I will try with that and keep you updated
Thanks for the explanations,
Yes that was the case This is also what I would think, although I double checked yesterday:I create a task on my local machine with trains 0.16.2rc0 This task calls task.execute_remotely() The task is sent to an agent running with 0.16 The agent install trains 0.16.2rc0 The agent runs the task, clones it and enqueues the cloned task The cloned task fails because it has no hyper-parameters/args section (I can seen that in the UI) When I clone the task manually usin...
This is what I get, when I am connected and when I am logged out (by clearing cache/cookies)
the first problem I had, that didn’t gave useful infos, was that docker was not installed in the agent machine x)
Yes, I am preparing them 🙂
In the comparison the problem will be the same, right? If I choose last/min/max values, it won’t tell me the corresponding values for others metrics. I could switch to graphs, group by metric and look manually for the corresponding values, but that becomes quickly cumbersome as the number of experiments compared grow
Looking at the source code, it seems like I should do:data_processing_task._artifact_manager.flush()
to make sure to have the latest version of artifacts in the task, right?
I think my problem is that I am launching an experiment with python3.9 and I expect it to run in the agent with python3.8. The inconsistency is from my side, I should fix it and create the task with python3.8 with:task.data.script.binary = "python3.8" task._update_script(convert_task.data.script)
Or use python:3.9 when starting the agent
Not really because this is difficult to control: I use the AWS autoscaler with ubuntu AMI and when an instance is created, packages are updated, and I don't know which python version I get, + changing the python version of the OS is not really recommended
I will go for lunch actually 😄 back in ~1h
AgitatedDove14 According to the dependency order you shared, the original message of this thread isn't solved: the agent mentionned used output from nvcc (2) before checking the nvidia driver version (1)
Oof now I cannot start the second controller in the services queue on the same second machine, it fails with
` Processing /tmp/build/80754af9/cffi_1605538068321/work
ERROR: Could not install packages due to an EnvironmentError: [Errno 2] No such file or directory: '/tmp/build/80754af9/cffi_1605538068321/work'
clearml_agent: ERROR: Could not install task requirements!
Command '['/home/machine/.clearml/venvs-builds.1.3/3.6/bin/python', '-m', 'pip', '--disable-pip-version-check', 'install', '-r'...
From my experience, I only installed cuda drivers on my machines. I didn't used conda to install torch nor cudatoolkit, I just let clearml-agent download the torch wheel file and install it
same as the first one described
I would let the trains team answer this in details, but as a user moving from MLflow to trains, I can share the following insights:
MLflow and trains overlap when it comes to having a system with nice web UI to compare/log experiments/models/metrics. But MFlow lacks a crutial feature IMO which is ML/DevOps: Using MLFlow, you will have to take care of the whole maintenance of your machines, design interactions between them, etc. This is where trains shines, it provides these features out-of-t...
I see what I described in https://allegroai-trains.slack.com/archives/CTK20V944/p1598522409118300?thread_ts=1598521225.117200&cid=CTK20V944 :
randomly, one of the two experiments is shown for that agent
I want in my CI tests to reproduce a run in an agent because the env changes and some things break in agents and not locally
region is empty, I never entered it and it worked