@<1523709410411548672:profile|NuttyFox2> Since the default server user configuration does not require authentication, I'm assuming your use case calls for some users being authenticated where others are not?
Such mixed access mode is currently not on the near term roadmap for the OSS server - You should create a feature request to help push it into the development plan.
Thanks for noticing @<1523708920831414272:profile|SuperficialDolphin93> - ClearML is already there under it's legacy "Trains" name, it's indeed past time for an update.
@<1523706095791509504:profile|FiercePenguin76> The "Log" tab has been renamed "Console" in ClearML 0.17.0 - Thanks for pointing out the outdated description.
WittyOwl57 Is that information available for you on each of the compared experiments when you view them individually?
DepressedChimpanzee34a filter similar to one in the scalars page where you can display a subset of the reported debug images can be useful
The scalars page provides a metric hide/show control - Is this the one you mean? The debug images page also provides a filter by metric - Depending on your naming policy this can easily be used to focus on more sparsely appearing images.
Else, an example of the filter you were thinking of would be appreciated.
Regardless, direct iteration access cou...
The easy way to do that is to add the desired metrics/params as custom columns, then use the column filters: https://clear.ml/docs/latest/docs/webapp/webapp_exp_table#customizing-the-experiments-table
RotundHedgehog76 Thanks for the spot - seems like docs are wrong, and CLI help is correct: '--skip-docker-network' will NOT pass '--network host' to the docker.
IrateDolphin19 ClearML provides for saving files generated as part of your code execution through the https://clear.ml/docs/latest/docs/references/sdk/task#upload_artifact . For your use case, you can have your code thus create the artifact as it runs, you can set the specific storage location when you edit your configuration, through the task's output_uri field.
Does this help?
OutrageousSheep60 You can see https://github.com/allegroai/clearml/issues/724 a discussion on the topic.
TL;DR:
Currently the containing project is available in the UI as a tooltip to the dataset name An alternate "Project view" to the datasets page is in the works
@<1628927672681762816:profile|GreasyKitten62> When you have specific display considerations, you can implement them through report_table's 'extra_layout' and 'extra_data' parameters
@<1580367723722969088:profile|SmoothDuck83> Not every plot is trivially be formed as a table (i.e. CSV), that's why the JSON export is available for all plots.
What were you considering?
GentleSwallow91 For more information, look at what ClearML logs for your experiments: https://docs-testing.allegro.ai/docs/latest/docs/fundamentals/task#logging-task-information
UpsetTurkey67 The single set of online documentation ( https://clear.ml/docs/latest/docs ), denotes OSS/Free-SaaS/Paid features as such. For example: https://clear.ml/docs/latest/docs/configs/clearml_conf#configuration-vault
DepressedChimpanzee34 Have you noticed the "Show n experiments selected" button on the bottom bar? This effectively toggles your view between whatever is currently sorted/filtered and the current item selection.
To address the scenario you describe: Switch to "Show selected experiments", remove the redundant items, and switch back to the original view: "Show all experiments"
Thoughts?
BattyLion34 Adding to AgitatedDove14 hint. See the following docs page: https://allegro.ai/clearml/docs/docs/deploying_clearml/clearml_config_for_clearml_server.html
There's an example here to get you going @<1645597514990096384:profile|GrievingFish90> .
We'll definitely look into finding a place for this info in the ClearML docs.
DepressedChimpanzee34 Thanks for clarifying where the current debug images display falls short for your use case - Extending the filtering to liken the behaviour of the scalars sound like a great idea 🙂
JitteryCoyote63 Great idea. Appreciate if you https://github.com/allegroai/clearml/issues/new/choose .
ExcitedFish86 You can https://clear.ml/docs/latest/docs/webapp/webapp_exp_table#adding-metrics-and--or-hyperparameters to include any parameter/metric column that helps your analysis (and subsequently filter the table on those columns).
There's not yet the equivalent of a parameter importance visualization, though such insight visualizations are definitely in our sights.
Sure appreciate if you can https://github.com/allegroai/clearml/issues/new on the subject :)
DefeatedCrab47 Happy you're finding Trains useful 🙂
but it definitely has it's advantages if TRAINS would support it (early stage Data Science infrastructure).
No doubt, and I definitely see such usable example in the cards for Trains' upcoming versions...
UnevenDolphin73 Am I missing anything in rephrasing your use case to "Have a single autoscaler service multiple queues" (where the autoscaler resource configuration is, in essence, the pool you mention)?
Take a look at https://clear.ml/docs/latest/docs/pipelines/pipelines_sdk_tasks#running-the-pipeline ;
By default pipelines are enqueued for execution by a ClearML Agent. You can explicitly change this behaviour in your code.
DepressedChimpanzee34 Always appreciated
ScrawnyLion96 Looks like a case of broken links - Check out https://clear.ml/docs/latest/docs/references/api/definitions#tasksexecution and https://clear.ml/docs/latest/docs/references/api/definitions#tasksconfiguration_item
GreasyPenguin14 When the project description is empty you get a "Add project overview" instead if the "Edit" button:
DefeatedCrab47 For the most part, mlflow can serve basic ML models using scikit-learn. In contrast, Trains was designed with more general purpose ML/DL workflows in mind, for which there's no "generic" way to serve models as different scenarios can use different input encoding, models results would be represented in a variety of forms, etc.
Consider also, that creating an HTTP endpoint for model inference is quite a breeze: there are multiple examples of Flask on top of any DL/ML framework w...
GreasyPenguin14 That's an annoying bug indeed - Thanks for spotting it. If you need to circumvent it before a fix comes out in one of the near releases, you can programatically use the https://clear.ml/docs/latest/docs/references/api/endpoints#post-projectsupdate e.g.from clearml.backend_api.session.client import APIClient client = APIClient() client.projects.update(project='<project ID>', description='My new description')
Note you can get your project's ID either from the webapp URL...
UnevenDolphin73 I think it'd be easier to track as a separate one.
Hi JuicyOtter4
The GUI search returns all experiments in the project that have your search string in their task id, name, description or any of their models' names.
You can use regex with the '.*' button in the search bar.