Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hello Everyone. I'M Getting Started With Clearml. I'M Trying Hpo Atm And Have Successfully Run The Base Task. When Running The Clone Of The Base Task In One Of The Agents, I'M Getting Following Error. Any Suggestions? Tia


AgitatedDove14
` import os

os.environ['LC_ALL'] = "C.UTF-8"
os.environ['LANG'] = "C.UTF-8"

from clearml import Task

CLEARML_PROJECT = 'Vodafone Sentiment full'
CLEARML_TASK = 'HPO_BASE_TASK'
os.environ["CLEARML_PROJECT"] = CLEARML_PROJECT
os.environ["CLEARML_TASK"] = CLEARML_TASK
os.environ['MPLBACKEND'] = "TkAg"

Task.set_credentials(
api_host=" ",
web_host=" ",
files_host=" ",
key='******************',
secret='
*********************'
)

task = Task.init(project_name=CLEARML_PROJECT, task_name=CLEARML_TASK)

import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from torch.utils.data import Dataset,DataLoader
from transformers import TrainingArguments, Trainer,get_scheduler
from datasets import load_metric, load_dataset, Value, Dataset, load_from_disk
import re
import torch.nn as nn

from clearml import Dataset as ds
from datasets import load_from_disk
import os

artifact_dir = ds.get(dataset_name="vodafone_dataset_preprocessed_train_dataloader", dataset_project="vodafone dataset_full").get_local_copy()
print(os.listdir(artifact_dir))
train_dataset = load_from_disk(os.path.join(artifact_dir, 'data'))

artifact_dir = ds.get(dataset_name="vodafone_dataset_preprocessed_test_dataloader", dataset_project="vodafone dataset_full").get_local_copy()
print(os.listdir(artifact_dir))
eval_dataset = load_from_disk(os.path.join(artifact_dir, 'data'))

print(input_train_data, input_test_data)
print(train_dataset.shape)
print(eval_dataset.shape)

example_configuration = {
'epochs': 5,
'lr': 0.00001,
'optimizer': 'adam'
}

task.connect(example_configuration)

model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment")
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment")

metric = load_metric('f1')

def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels , average='micro')

torch.cuda.empty_cache()

training_args = TrainingArguments(
num_train_epochs=example_configuration['epochs'],
logging_steps=5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
evaluation_strategy="epoch",
learning_rate=example_configuration['lr'],
save_steps = 250,
save_total_limit = 2,
output_dir = 'output/',
report_to = 'clearml',
)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)

trainer.train() `

  
  
Posted one year ago
145 Views
0 Answers
one year ago
one year ago