Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hello Everyone. I'M Getting Started With Clearml. I'M Trying Hpo Atm And Have Successfully Run The Base Task. When Running The Clone Of The Base Task In One Of The Agents, I'M Getting Following Error. Any Suggestions? Tia


also hpo controller:
` import os
from clearml import Task

os.environ['MPLBACKEND'] = "TkAg"

CLEARML_PROJECT = "Vodafone Sentiment full"
CLEARML_TASK = "HPO optimizer Controller"
os.environ["CLEARML_PROJECT"] = CLEARML_PROJECT
os.environ["CLEARML_TASK"] = CLEARML_TASK

Task.set_credentials(
api_host=" ",
web_host=" ",
files_host=" ",
key='88888888888',
secret='888888888888888'
)

from clearml.automation import UniformParameterRange, UniformIntegerParameterRange, DiscreteParameterRange
from clearml.automation import HyperParameterOptimizer
from clearml.automation import GridSearch

from clearml import Task

task = Task.init(project_name=CLEARML_PROJECT,
task_name=CLEARML_TASK,
task_type=Task.TaskTypes.optimizer,
reuse_last_task_id=False)

optimizer = HyperParameterOptimizer(

specifying the task to be optimized, task must be in system already so it can be cloned

base_task_id=base_task,

setting the hyper-parameters to optimize

hyper_parameters=[
UniformIntegerParameterRange('General/epochs', min_value=2, max_value=12, step_size=5),
UniformParameterRange('General/lr', min_value=0.000001, max_value=0.0001, step_size=0.002),
],

setting the objective metric we want to maximize/minimize

objective_metric_title='f1',
objective_metric_series='eval',
objective_metric_sign='max',

setting optimizer

optimizer_class=GridSearch,

configuring optimization parameters

execution_queue='default',
max_number_of_concurrent_tasks=4,
optimization_time_limit=60.,
compute_time_limit=120,
total_max_jobs=20,
min_iteration_per_job=0,
max_iteration_per_job=15,
)

optimizer.set_report_period(1)

start the optimization process

this function returns immediately

optimizer.start()

set the time limit for the optimization process (2 hours)

optimizer.set_time_limit(in_minutes=120.0)

wait until process is done (notice we are controlling the optimization process in the background)

optimizer.wait()

optimization is completed, print the top performing experiments id

top_exp = optimizer.get_top_experiments(top_k=3)
print([t.id for t in top_exp])

make sure background optimization stopped

optimizer.stop() `

  
  
Posted 2 years ago
169 Views
0 Answers
2 years ago
one year ago
Tags
hpo