Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Heyo, After Building Some Custom Pipelining Functionality On Mlflow, I Started Looking For Better Software That Can Beat What I Created - With A Similar Amount Of Effort. Problem Has Been That Up Till Now, All I Found Could Make Things Way Better But Al


That makes sense to me, what do you think about the following:
` from clearml import PipelineDecorator

class AbstractPipeline(object):
def init():
pass

@PipelineDecorator.pipeline(...)
def run(self, run_arg):
data = self.step1(run_arg)
final_model = self.step2(data)
self.upload_model(final_model)

@PipelineDecorator.component(...)
def step1(self, arg_a):
# do something
return value

@PipelineDecorator.component(...)
def step2(self, arg_b):
# do something
return value This would mean steps 1/2 are executed on different machines, where the data passed between them is automatically serialized. It also allows you to build the actual logic in def run ` that drives the different components.

wdyt?

  
  
Posted 2 years ago
175 Views
0 Answers
2 years ago
one year ago