Unanswered
Hi Everyone, I Have Questions Related To Clearml-Serving.
` from multiprocessing.sharedctypes import Value
from typing import Any
import numpy as np
import pandas as pd
from clearml import Task
import pickle
from sklearn.linear_model import LinearRegression, RANSACRegressor
Notice Preprocess class Must be named "Preprocess"
class Preprocess(object):
def init(self):
# set internal state, this will be called only once. (i.e. not per request)
self.task = Task.get_task(project_name='serving examples', task_id='bfc1ae4d242b4d5a9955adde1c9e5a58')
if self.task.artifacts.get('seasonality').size is not None:
self.seasonality = eval(self.task.artifacts.get('seasonality').preview)
self.z_score = eval(self.task.artifacts.get('z_score').preview)
else:
self.z_score = None
self.threshold = eval(self.task.artifacts.get('threshold').preview)
self.timesteps = eval(self.task.artifacts.get('time_steps').preview)
self.trend_step = eval(self.task.artifacts.get('trend_step').preview)
regressor_path = self.task.artifacts['regressor'].get_local_copy()
file_regressor = open(regressor_path, 'rb')
self.regressor = pickle.load(file_regressor)
pass
def z_score_normalization(self, df,seasonality, normal_z_score=None):
indexer = 0
if seasonality == 'hourly':
season = df.groupby(df.index.hour)
if seasonality == 'daily':
season = df.groupby(df.index.dayofweek)
if seasonality == 'weekly':
season = df.groupby(df.index.isocalendar().week)
indexer = 1
if seasonality == 'monthly':
season = df.groupby(df.index.month)
indexer = 1
if normal_z_score is not None:
for index, time in season:
index -= indexer
df.loc[time.index, 'value'] = (time['value'] - normal_z_score[index]['mean'])/normal_z_score[index]['std']
return df
else:
z_score = []
for _, time in season:
mean = np.mean(time['value'])
std = np.std(time['value'])
df.loc[time.index, 'value'] = (time['value'] - mean)/std
z_score.append({'mean': mean, 'std': std})
return df, z_score
def create_sequences(self, X, y):
Xs, ys = [], []
for i in range(len(X)-self.timesteps):
Xs.append(X.iloc[i:(i+self.timesteps)].values)
ys.append(y.iloc[i+self.timesteps])
return np.array(Xs), np.array(ys)
def preprocess(self, body: dict, state: dict, collect_custom_statistics_fn=None) -> Any:
df = pd.DataFrame({'date': body.get("date"), 'value': body.get("value")}, columns=['date','value'])
df['date'] = pd.to_datetime(df['date'], dayfirst = True)
df = df.set_index('date')
df = df.resample('1T').mean()
# detrend regression here
y_test_value = df['value'].values
X_test_value = [i + self.trend_step for i in range(0, len(df['value']))]
X_test_value = np.reshape(X_test_value, (len(X_test_value), 1))
# X_test_poly = preprocessing.get_polynomial_features(X_test_value)
trendp = self.regressor.predict(X_test_value)
detrended = [y_test_value[i]-trendp[i] for i in range(0, len(df['value']))]
df['value'] = detrended
self.task.upload_artifact('trend_step', self.trend_step + 1)
if self.z_score is not None:
df = self.z_score_normalization(df, self.seasonality, self.z_score)
X, _ = self.create_sequences(df[['value']], df['value'])
state['X'] = X
state['df_test'] = df
return X
def postprocess(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> dict:
# post process the data returned from the model inference engine
# data is the return value from model.predict we will put is inside a return value as Y
X_test = state['X']
df_test = state['df_test']
test_mae_loss = np.mean(np.abs(data-X_test), axis=1)
test_score_df = pd.DataFrame(df_test[self.timesteps:])
test_score_df['loss'] = test_mae_loss
test_score_df['threshold'] = self.threshold
test_score_df['anomaly'] = test_score_df['loss'] > test_score_df['threshold']
test_score_df['Close'] = df_test[self.timesteps:]['value']
return test_score_df.to_dict() `
160 Views
0
Answers
2 years ago
one year ago