Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
When It Comes To Continuous Training, I Wanted To Know How You Train Or Would Train If You Have Annotated Data Incoming? Do You Train Completely Online Where You Train As Soon As You Have A Training Example Available? Do You Instead Train When You Have A


Lastly, I have asked this question multiple times, but since the MLOps process is so new, I want to learn from others experience regarding evaluation strategies. What would be a good evaluation strategy? Splitting the batch into train test? that would mean less data for training but we can test it asap. Another idea I had was training on the current batch, then evaluating it on incoming batches. Any other ideas?

  
  
Posted 3 years ago
153 Views
0 Answers
3 years ago
one year ago