Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
When It Comes To Continuous Training, I Wanted To Know How You Train Or Would Train If You Have Annotated Data Incoming? Do You Train Completely Online Where You Train As Soon As You Have A Training Example Available? Do You Instead Train When You Have A


I get what you're saying. I was considering training on just the new data to see how it works. To me it felt like that was the fastest way to deal with data drift. I understand that it may introduce instability however. I was curious how other developers who have successfully managed to set up continuous training deal with it. 100% new data, or a ratio between new and old data. And if it is the latter, what should be the case, which should be the majority, old data or new data?

  
  
Posted 3 years ago
136 Views
0 Answers
3 years ago
one year ago