Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
Hi! Is There Something Happening With The

Hi! Is there something happening with the ModelCheckpoint callback on tensorflow==2.4.0 ? Using 2.2.0 gave me an input model on the artifacts tab in the GUI 😒

  
  
Posted 3 years ago
Votes Newest

Answers 30


Thanks Martin! I’ll keep checking πŸ‘Œ

  
  
Posted 3 years ago

"Fix TF 2.4 keras load/save model"

  
  
Posted 3 years ago

Hey AgitatedDove14 after playing around seems that if the callback filepath points to an hdf5 file it is not uploaded.

  
  
Posted 3 years ago

Yey @ https://app.slack.com/team/U01CJ43KX2N this one does not work!
Give me a minute I'll

  
  
Posted 3 years ago

Basically one points to an hdf5 and the other one has no extensiion

  
  
Posted 3 years ago

GrievingTurkey78 I have to admit I can't see the difference, can you help me out πŸ™‚

  
  
Posted 3 years ago

ModelCheckpoint('best_model', save_best_only=True)That worked for me now, what's the diff

  
  
Posted 3 years ago

Hmm I think this was the fix (only with TF2.4), let me check a sec

  
  
Posted 3 years ago

If you try:
ModelCheckpoint('best_model.hdf5', save_best_only=True)does it work too?

  
  
Posted 3 years ago

GrievingTurkey78 please feel free to send me code snippets to test πŸ™‚

  
  
Posted 3 years ago

I changed it to point to a folder and it shows up

  
  
Posted 3 years ago

GrievingTurkey78 are you able to reproduce it?

  
  
Posted 3 years ago

ohh that is odd. Let me check a minute

  
  
Posted 3 years ago

AgitatedDove14 its on the checkpoint

  
  
Posted 3 years ago

Any idea why this could happen?

  
  
Posted 3 years ago

Thanks AgitatedDove14 πŸ™Œ

  
  
Posted 3 years ago

This works:
filepath = self.log_dir + os.sep + "checkpoint" self.callbacks.append( ModelCheckpoint( filepath, monitor="val_loss", mode="min", save_best_only=True, save_weights_only=True, ) )And this doesn’t:
filepath = self.log_dir + os.sep + "checkpoint.hdf5" self.callbacks.append( ModelCheckpoint( filepath, monitor="val_loss", mode="min", save_best_only=True, save_weights_only=True, ) )

  
  
Posted 3 years ago

Hey AgitatedDove14 does this work for you?
` from argparse import ArgumentParser
from tensorflow.keras import utils as np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint

import tensorflow as tf
from clearml import Task

class Linear(tf.keras.Model):
def init(self, in_shape=(784,), num_classes=10):
super().init()
self.linear = Dense(num_classes, input_shape=in_shape, activation="softmax")

def call(self, inputs, training=None, mask=None):
    return self.linear(inputs)

def main():
parser = ArgumentParser()
parser.add_argument("--output-uri", type=str, required=False)
args = parser.parse_args()

# the data, shuffled and split between train and test sets
nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784).astype("float32") / 255.0
X_test = X_test.reshape(10000, 784).astype("float32") / 255.0

print(X_train.shape[0], "train samples")
print(X_test.shape[0], "test samples")

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Linear()
model.compile(
    loss="categorical_crossentropy", optimizer=Adam(), metrics=["accuracy"]
)
model_checkpoint = ModelCheckpoint(
    "best_model.hdf5", save_best_only=True, save_weights_only=True
)
# Connecting ClearML
task = Task.init(
    project_name="examples", task_name="Upload problem", output_uri=args.output_uri
)
history = model.fit(
    X_train,
    Y_train,
    batch_size=128,
    epochs=5,
    callbacks=[model_checkpoint],
    verbose=1,
    validation_data=(X_test, Y_test),
)

if name == "main":
main() `

  
  
Posted 3 years ago

This is what I just used:
` import os
from argparse import ArgumentParser

from tensorflow.keras import utils as np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Activation, Dense, Softmax
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint

from clearml import Task

parser = ArgumentParser()
parser.add_argument('--output-uri', type=str, required=False)
args = parser.parse_args()

the data, shuffled and split between train and test sets

nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784).astype('float32')/255.
X_test = X_test.reshape(10000, 784).astype('float32')/255.
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

model = Sequential()
model.add(Dense(10, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Softmax())
model.summary()
output_folder = os.path.join(os.getcwd(), 'tmp')
model.compile(loss='categorical_crossentropy',
optimizer=Adam(),
metrics=['accuracy'])

model_checkpoint = ModelCheckpoint('best_model', save_best_only=True)

Connecting ClearML

task = Task.init(project_name='examples',
task_name='Upload problem',
output_uri=args.output_uri)

history = model.fit(X_train, Y_train,
batch_size=128,
epochs=5,
callbacks=[model_checkpoint],
verbose=1,
validation_data=(X_test, Y_test))

os.makedirs(output_folder, exist_ok=True)
model.save(os.path.join(output_folder, 'model.h5'))

print('Number of output models: {}'.format(len(task.models["output"]))) `

  
  
Posted 3 years ago

AgitatedDove14 Thanks! Im trying to figure out how to create a minimum working example! I am also working with Hydra so that may be a thing. The extension is whats causing it to fail (haven’t figured out why).

  
  
Posted 3 years ago

Funny it's the extension "h5" , it is a different execution path inside keras...
Let me see what can be done πŸ™‚

  
  
Posted 3 years ago

It works perfectly! AgitatedDove14 There is something weird on my side 😒

  
  
Posted 3 years ago

Hi GrievingTurkey78
I think it is already fixed with 0.17.5, no?

  
  
Posted 3 years ago

Thanks AgitatedDove14 ! seems to be subclassed model + extension

  
  
Posted 3 years ago

Hi AgitatedDove14 ! Do you have any updates on this?

  
  
Posted 3 years ago

Yes , both work :(

  
  
Posted 3 years ago

Oh my bad, post 0.17.5 😞
RC will be out soon, in the meantime you can install directly from github:
pip install git+

  
  
Posted 3 years ago

Thanks AgitatedDove14 πŸ™Œ

  
  
Posted 3 years ago
958 Views
30 Answers
3 years ago
one year ago
Tags