Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hi! Is There Something Happening With The


Hey AgitatedDove14 does this work for you?
` from argparse import ArgumentParser
from tensorflow.keras import utils as np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint

import tensorflow as tf
from clearml import Task

class Linear(tf.keras.Model):
def init(self, in_shape=(784,), num_classes=10):
super().init()
self.linear = Dense(num_classes, input_shape=in_shape, activation="softmax")

def call(self, inputs, training=None, mask=None):
    return self.linear(inputs)

def main():
parser = ArgumentParser()
parser.add_argument("--output-uri", type=str, required=False)
args = parser.parse_args()

# the data, shuffled and split between train and test sets
nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784).astype("float32") / 255.0
X_test = X_test.reshape(10000, 784).astype("float32") / 255.0

print(X_train.shape[0], "train samples")
print(X_test.shape[0], "test samples")

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Linear()
model.compile(
    loss="categorical_crossentropy", optimizer=Adam(), metrics=["accuracy"]
)
model_checkpoint = ModelCheckpoint(
    "best_model.hdf5", save_best_only=True, save_weights_only=True
)
# Connecting ClearML
task = Task.init(
    project_name="examples", task_name="Upload problem", output_uri=args.output_uri
)
history = model.fit(
    X_train,
    Y_train,
    batch_size=128,
    epochs=5,
    callbacks=[model_checkpoint],
    verbose=1,
    validation_data=(X_test, Y_test),
)

if name == "main":
main() `

  
  
Posted 3 years ago
156 Views
0 Answers
3 years ago
one year ago
Tags