Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hello, I Am Training Some Models With Yolov8 And Want To Upload The Metrics To The Clearml Webpage In. However, Sometimes It Works And Sometimes It Does Not Work. Clearml Is Able To Read Everything From The Console And Stuff Like That, But Is Not Able To


@<1523701118159294464:profile|ExasperatedCrab78> Sure! Here is my train file:

from ultralytics import YOLO

# Load a model
model = YOLO(model="yolov8m.pt")  # load a pretrained model (recommended for training)

# Train the model
model.train(
    data="data.yaml",
    epochs=200,
    imgsz=640,
    label_smoothing=0.1,
    shear=0.01,
    perspective=0.0001,
    mosaic=0.5,
    mixup=0.1,
)

and here is from the source code for yolov8

# Ultralytics YOLO :rocket:, GPL-3.0 license
import re

import matplotlib.image as mpimg
import matplotlib.pyplot as plt

from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params

try:
    import clearml
    from clearml import Task
    from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
    from clearml.binding.matplotlib_bind import PatchedMatplotlib

    assert hasattr(clearml, '__version__')  # verify package is not directory
    assert not TESTS_RUNNING  # do not log pytest
except (ImportError, AssertionError):
    clearml = None


def _log_debug_samples(files, title='Debug Samples'):
    """
        Log files (images) as debug samples in the ClearML task.

        arguments:
        files (List(PosixPath)) a list of file paths in PosixPath format
        title (str) A title that groups together images with the same values
        """
    task = Task.current_task()
    if task:
        for f in files:
            if f.exists():
                it = re.search(r'_batch(\d+)', f.name)
                iteration = int(it.groups()[0]) if it else 0
                task.get_logger().report_image(title=title,
                                               series=f.name.replace(it.group(), ''),
                                               local_path=str(f),
                                               iteration=iteration)


def _log_plot(title, plot_path):
    """
        Log image as plot in the plot section of ClearML

        arguments:
        title (str) Title of the plot
        plot_path (PosixPath or str) Path to the saved image file
        """
    img = mpimg.imread(plot_path)
    fig = plt.figure()
    ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[])  # no ticks
    ax.imshow(img)

    Task.current_task().get_logger().report_matplotlib_figure(title, '', figure=fig, report_interactive=False)


def on_pretrain_routine_start(trainer):
    try:
        task = Task.current_task()
        if task:
            # Make sure the automatic pytorch and matplotlib bindings are disabled!
            # We are logging these plots and model files manually in the integration
            PatchPyTorchModelIO.update_current_task(None)
            PatchedMatplotlib.update_current_task(None)
        else:
            task = Task.init(project_name=trainer.args.project or 'YOLOv8',
                             task_name=trainer.args.name,
                             tags=['YOLOv8'],
                             output_uri=True,
                             reuse_last_task_id=False,
                             auto_connect_frameworks={
                                 'pytorch': False,
                                 'matplotlib': False})
            LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, '
                           'please add clearml-init and connect your arguments before initializing YOLO.')
        task.connect(vars(trainer.args), name='General')
    except Exception as e:
        LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')


def on_train_epoch_end(trainer):
    if trainer.epoch == 1 and Task.current_task():
        _log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic')


def on_fit_epoch_end(trainer):
    task = Task.current_task()
    if task:
        # You should have access to the validation bboxes under jdict
        task.get_logger().report_scalar(title='Epoch Time',
                                        series='Epoch Time',
                                        value=trainer.epoch_time,
                                        iteration=trainer.epoch)
        if trainer.epoch == 0:
            model_info = {
                'model/parameters': get_num_params(trainer.model),
                'model/GFLOPs': round(get_flops(trainer.model), 3),
                'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
            for k, v in model_info.items():
                task.get_logger().report_single_value(k, v)


def on_val_end(validator):
    if Task.current_task():
        # Log val_labels and val_pred
        _log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation')


def on_train_end(trainer):
    task = Task.current_task()
    if task:
        # Log final results, CM matrix + PR plots
        files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
        files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()]  # filter
        for f in files:
            _log_plot(title=f.stem, plot_path=f)
        # Report final metrics
        for k, v in trainer.validator.metrics.results_dict.items():
            task.get_logger().report_single_value(k, v)
        # Log the final model
        task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)


callbacks = {
    'on_pretrain_routine_start': on_pretrain_routine_start,
    'on_train_epoch_end': on_train_epoch_end,
    'on_fit_epoch_end': on_fit_epoch_end,
    'on_val_end': on_val_end,
    'on_train_end': on_train_end} if clearml else {}
  
  
Posted one year ago
193 Views
0 Answers
one year ago
one year ago