Unanswered
From Clearml Import Pipelinecontroller
# We Will Use The Following Function An Independent Pipeline Component Step
# Notice All Package Imports Inside The Function Will Be Automatically Logged As
# Required Packages For The Pipeline Execution Step
Def S
from clearml import PipelineController
# We will use the following function an independent pipeline component step
# notice all package imports inside the function will be automatically logged as
# required packages for the pipeline execution step
def step_one(pickle_data_url):
# make sure we have scikit-learn for this step, we need it to use to unpickle the object
import sklearn # noqa
import pickle
import pandas as pd
from clearml import StorageManager
pickle_data_url = \
pickle_data_url or \
'
'
local_iris_pkl = StorageManager.get_local_copy(remote_url=pickle_data_url)
with open(local_iris_pkl, 'rb') as f:
iris = pickle.load(f)
data_frame = pd.DataFrame(iris['data'], columns=iris['feature_names'])
data_frame.columns += ['target']
data_frame['target'] = iris['target']
return data_frame
# We will use the following function an independent pipeline component step
# notice all package imports inside the function will be automatically logged as
# required packages for the pipeline execution step
def step_two(data_frame, test_size=0.2, random_state=42):
# make sure we have pandas for this step, we need it to use the data_frame
import pandas as pd # noqa
from sklearn.model_selection import train_test_split
y = data_frame['target']
X = data_frame[(c for c in data_frame.columns if c != 'target')]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=random_state)
return X_train, X_test, y_train, y_test
# We will use the following function an independent pipeline component step
# notice all package imports inside the function will be automatically logged as
# required packages for the pipeline execution step
def step_three(data):
# make sure we have pandas for this step, we need it to use the data_frame
import pandas as pd # noqa
from sklearn.linear_model import LogisticRegression
X_train, X_test, y_train, y_test = data
model = LogisticRegression(solver='liblinear', multi_class='auto')
model.fit(X_train, y_train)
return model
if __name__ == '__main__':
# create the pipeline controller
pipe = PipelineController(
project='test_project',
name='Pipeline demo',
version='1.1',
add_pipeline_tags=False,
)
# set the default execution queue to be used (per step we can override the execution)
pipe.set_default_execution_queue('queue-02')
# add pipeline components
pipe.add_parameter(
name='url',
description='url to pickle file',
default='
'
)
pipe.add_function_step(
name='step_one',
function=step_one,
function_kwargs=dict(pickle_data_url='${pipeline.url}'),
function_return=['data_frame'],
cache_executed_step=True,
)
pipe.add_function_step(
name='step_two',
# parents=['step_one'], # the pipeline will automatically detect the dependencies based on the kwargs inputs
function=step_two,
function_kwargs=dict(data_frame='${step_one.data_frame}'),
function_return=['processed_data'],
cache_executed_step=True,
)
pipe.add_function_step(
name='step_three',
# parents=['step_two'], # the pipeline will automatically detect the dependencies based on the kwargs inputs
function=step_three,
function_kwargs=dict(data='${step_two.processed_data}'),
function_return=['model'],
cache_executed_step=True,
)
# For debugging purposes run on the pipeline on current machine
# Use run_pipeline_steps_locally=True to further execute the pipeline component Tasks as subprocesses.
# pipe.start_locally(run_pipeline_steps_locally=False)
# Start the pipeline on the services queue (remote machine, default on the clearml-server)
pipe.start()
print('pipeline completed')
1K Views
0
Answers
one year ago
one year ago
Tags
Similar posts