Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
Hi All, I Was Trying To Use Clearml-Task To Run A Custom Docker(With Poetry To Install All The Python Dependencies And Activated The Environment) Using Clearml Gpu, But It Seems Like Clearml Always Create A Virtual Environment And Run The Python Script Fr

Hi all, I was trying to use clearml-task to run a custom docker(with poetry to install all the python dependencies and activated the environment) using clearml GPU, but it seems like clearml always create a virtual environment and run the python script from /root/.clearml/venvs-builds/3.10/bin/python . Is there a way that I can have the clearml-task to automatically activated a virtual environment use the activated custom virtual environment in my docker and run the scripts from there instead of always creating a new venv inheriting from the clearml system_site_packages? I noticed that clearml.conf has a configuration agent.docker_use_activated_venv , but I am not sure how to enable it from clearml-task

  
  
Posted one year ago
Votes Newest

Answers 38


well I do not think you set your pytorch lightining to use cuda:

GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
/code/.venv/lib/python3.9/site-packages/lightning/pytorch/trainer/setup.py:176: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.
  
  
Posted one year ago

Hi @<1597762318140182528:profile|EnchantingPenguin77>

, but it seems like clearml always create a virtual environmen

Yes that's correct, but the new venv inside the container inherits from the system packages (so if nothing changes it does nothing)

Is there a way that I can have the clearml-task to automatically activated a virtual environment use the activated custom virtual environment in my docker and run the scripts

Yoo can but the "correct" way to work with python and containers is to actually install everything on the system (not venv)
That said, just set this env variable to point top the python binary inside your venv in the container
CLEARML_AGENT_SKIP_PIP_VENV_INSTALL=/root/venv/bin/python
None

  
  
Posted one year ago

@<1523701205467926528:profile|AgitatedDove14> Is there any reason why you mentioned that the "correct" way to work with python and containers is to actually install everything on the system (not venv)?

  
  
Posted one year ago

I actually have aborted it

  
  
Posted one year ago

It seems like CPU is working on something, I saw the usage is spiking periodically but I didn't run any task this morning

  
  
Posted one year ago

Thanks for the detials @<1597762318140182528:profile|EnchantingPenguin77>

clearml.Auto-Scaler - INFO - New instance b97e702d-e2b3-4f28-adab-be59648601ea listening to test-gpu queue

This looks like a new agent was spined on your EC2 account, can you see it in the "Workers" page ?

  
  
Posted one year ago

# 

from typing import List, Optional, Tuple
import pyrootutils
import lightning
import hydra
from clearml import Task
from omegaconf import DictConfig, OmegaConf
from lightning import LightningDataModule, LightningModule, Trainer, Callback
from lightning.pytorch.loggers import Logger

pyrootutils.setup_root(__file__, indicator="pyproject.toml", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
#       (so you don't need to force user to install project as a package)
#       (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
#       (which is used as a base for paths in "configs/paths/default.yaml")
#       (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info: 

# ------------------------------------------------------------------------------------ #

from src.utils.pylogger import get_pylogger
from src.utils.instantiators import instantiate_callbacks, instantiate_loggers

log = get_pylogger(__name__)


def train(cfg: DictConfig):
    # set seed for random number generators in pytorch, numpy and python.random
    if cfg.get("seed"):
        lightning.seed_everything(cfg.seed, workers=True)

    log.info(f"Instantiating datamodule <{cfg.data._target_}>")
    datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)

    log.info(f"Instantiating model <{cfg.model._target_}>")
    model: LightningModule = hydra.utils.instantiate(cfg.model)

    log.info("Instantiating callbacks...")
    callbacks: List[Callback] = instantiate_callbacks(cfg.get("callbacks"))

    log.info("Instantiating loggers...")
    logger: List[Logger] = instantiate_loggers(cfg.get("logger"))

    log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
    trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)

    if cfg.get("train"):
        log.info("Starting training!")
        trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))

    if cfg.get("test"):
        log.info("Starting testing!")
        ckpt_path = trainer.checkpoint_callback.best_model_path
        if ckpt_path == "":
            log.warning("Best ckpt not found! Using current weights for testing...")
            ckpt_path = None
        trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
        log.info(f"Best ckpt path: {ckpt_path}")


@hydra.main(version_base="1.3", config_path="../../configs", config_name="train.yaml")
def main(cfg: DictConfig):
    OmegaConf.set_struct(cfg, False)  # allow cfg to be mutable

    task = Task.init(project_name="fluoro-motion-detection", task_name="uniformer-test")
    logger = task.get_logger()
    logger.report_text("You can view your full hydra configuration under Configuration tab in the UI")
    print(OmegaConf.to_yaml(cfg))

    train(cfg)


if __name__ == "__main__":
    main()
  
  
Posted one year ago

I am using hydra in main.py

  
  
Posted one year ago