well I do not think you set your pytorch lightining to use cuda:
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
/code/.venv/lib/python3.9/site-packages/lightning/pytorch/trainer/setup.py:176: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.
@<1523701205467926528:profile|AgitatedDove14> Is there any reason why you mentioned that the "correct" way to work with python and containers is to actually install everything on the system (not venv)?
I've added gpu:True to my hydra config file but the GPU is still not used
Click on the Task it is running and abort it, it seems to be stuck, I guess this is why the others are not pulled
That's the right place but
like you would use hydra --override, which in your case I think it should be "accelerator.gpu" ,
You can also change allow_omegaconf_edit
in the UI to True, and then you could just edit the OmegaConf in the UI (if you do not change
allow_omegaconf_edit` then the edit in the UI is ignored)
but it still not is able to run any task after I abort and rerun another task
When you "run" a task you are pushing it to a queue, so how come a queue is empty? what happens after you push your newly cloned task to the queue ?
@<1597762318140182528:profile|EnchantingPenguin77> can you provide the full log?
#
from typing import List, Optional, Tuple
import pyrootutils
import lightning
import hydra
from clearml import Task
from omegaconf import DictConfig, OmegaConf
from lightning import LightningDataModule, LightningModule, Trainer, Callback
from lightning.pytorch.loggers import Logger
pyrootutils.setup_root(__file__, indicator="pyproject.toml", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
# (so you don't need to force user to install project as a package)
# (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
# (which is used as a base for paths in "configs/paths/default.yaml")
# (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info:
# ------------------------------------------------------------------------------------ #
from src.utils.pylogger import get_pylogger
from src.utils.instantiators import instantiate_callbacks, instantiate_loggers
log = get_pylogger(__name__)
def train(cfg: DictConfig):
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
lightning.seed_everything(cfg.seed, workers=True)
log.info(f"Instantiating datamodule <{cfg.data._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating callbacks...")
callbacks: List[Callback] = instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers...")
logger: List[Logger] = instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)
if cfg.get("train"):
log.info("Starting training!")
trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))
if cfg.get("test"):
log.info("Starting testing!")
ckpt_path = trainer.checkpoint_callback.best_model_path
if ckpt_path == "":
log.warning("Best ckpt not found! Using current weights for testing...")
ckpt_path = None
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
log.info(f"Best ckpt path: {ckpt_path}")
@hydra.main(version_base="1.3", config_path="../../configs", config_name="train.yaml")
def main(cfg: DictConfig):
OmegaConf.set_struct(cfg, False) # allow cfg to be mutable
task = Task.init(project_name="fluoro-motion-detection", task_name="uniformer-test")
logger = task.get_logger()
logger.report_text("You can view your full hydra configuration under Configuration tab in the UI")
print(OmegaConf.to_yaml(cfg))
train(cfg)
if __name__ == "__main__":
main()