Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hi. We Are Building A Pipeline. For This, We Try To Get Access To Artefacts From Preceding Tasks In The Pipeline, Via Their Task Id, Like Hpo_Task = Task.Get_Task(Task_Id=Hpo_Task_Id) But These Seem Not To Work Reliably, Presumably Because It Is Not Guara


import os
from datetime import datetime
from typing import List, Optional, Sequence, Union
import json
import pickle

import typer
from clearml import Dataset, Task, TaskTypes
from clearml.automation import PipelineController
from clearml.utilities.config import config_dict_to_text

from src.main.python.pkautopilot.configuration import PipelineConfig
from src.main.python.pkautopilot.constants import *
from task1_dataset_versioning import dataset_versioning
from task2_hpo import hpo
from task3_training import train
from task4_reporting import report

cli = typer.Typer()

@cli.command()
def pipeline(
config_path: str = typer.Option(
"config_path", help="Path to the pipeline configuration yaml file."),
queue: Optional[str] = typer.Option(
"k8s_scheduler", show_default=False, help="Name of the queue in which to schedule the task"),
local: bool = typer.Option(
False, help="Run the pipeline locally (True) or in the cloud (False)")

):
# Read and connect config
pipeline_config = PipelineConfig(config_path)
config = pipeline_config.config
parsed_config = pipeline_config.parsed_config

project_name = config.meta.project_name

pipe = PipelineController(
    name="phenkit-learn pipeline",
    project=project_name,
    target_project=True,
    auto_version_bump=True,
    add_pipeline_tags=False,
    docker=CLEARML_AGENT_DOCKER_IMAGE,
    packages="./requirements.txt",
    repo="./"
)

current_task = pipe._task
pipeline_task_id = current_task.task_id
# fetch the task id of the pipeline. We save the config under the pipeline task and access it on each subtask

pipe.connect_configuration(configuration=parsed_config)

# upload config file as artefact so that child tasks can read from it

current_task.setup_aws_upload(bucket=CLEARML_BUCKET, subdir=SUBDIR_CONFIG,
                              key=AWS_ACCESS_KEY, secret=AWS_SECRET_ACCESS_KEY,
                              region=AWS_DEFAULT_REGION)
print(f'pipeline.py: uploading config for task with id {pipeline_task_id}')
current_task.upload_artifact(
    "pipeline_config", artifact_object=config_path, wait_on_upload=True)

pipe.add_function_step(
    name=CLEARML_PIPELINE_VERSION_DATASET,
    function=dataset_versioning,
    function_kwargs=dict(pipe_task_id=pipeline_task_id),
    function_return=['dataset_id'],
    project_name=project_name,
    task_name=CLEARML_PIPELINE_VERSION_DATASET,
    task_type=TaskTypes.data_processing,
    packages="./requirements.txt",
    docker=CLEARML_AGENT_DOCKER_IMAGE,
    repo="./",
    # cache_executed_step=True, # does not execute this step if nothing has changed
)...
  
  
Posted 11 months ago
126 Views
0 Answers
11 months ago
11 months ago