Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
..


According to pipeline_from_functions.py , it is easy to understand that step1 returns data_frame and I can use it as input of step2. But I have no idea what string reference could be used when steps come from Task?

code

pipe.add_function_step(
    name='step_one',
    function=step_one,
    function_kwargs=dict(pickle_data_url='${pipeline.url}'),
    function_return=['data_frame'],
    cache_executed_step=True,
)
pipe.add_function_step(
    name='step_two',
    # parents=['step_one'],  # the pipeline will automatically detect the dependencies based on the kwargs inputs
    function=step_two,
    function_kwargs=dict(data_frame='${step_one.data_frame}'),
    function_return=['processed_data'],
    cache_executed_step=True,
)

def step_one(pickle_data_url):
    # make sure we have scikit-learn for this step, we need it to use to unpickle the object
    import sklearn  # noqa
    import pickle
    import pandas as pd
    from clearml import StorageManager
    pickle_data_url = \
        pickle_data_url or \
        '
'
    local_iris_pkl = StorageManager.get_local_copy(remote_url=pickle_data_url)
    with open(local_iris_pkl, 'rb') as f:
        iris = pickle.load(f)
    data_frame = pd.DataFrame(iris['data'], columns=iris['feature_names'])
    data_frame.columns += ['target']
    data_frame['target'] = iris['target']
    return data_frame


def step_two(data_frame, test_size=0.2, random_state=42):
    # make sure we have pandas for this step, we need it to use the data_frame
    import pandas as pd  # noqa
    from sklearn.model_selection import train_test_split
    y = data_frame['target']
    X = data_frame[(c for c in data_frame.columns if c != 'target')]
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_size, random_state=random_state)

    return X_train, X_test, y_train, y_test
  
  
Posted 2 years ago
84 Views
0 Answers
2 years ago
8 months ago