Unanswered
I Get These Warnings Whenever I Run Pipelines And I Have No Idea What It Means Or Where It Comes From:
This function shows the same behaviour once the task gets initialized:
# Training helper functions
def prepare_training(env: dict, model_variant: str, dataset_id: str, args: dict, project: str = "LVGL UI Detector"):
from clearml import Task, Dataset
import os
print(f"Training {model_variant} on dataset: {dataset_id}")
# Fetch dataset YAML
env['FILES'][dataset_id] = Dataset.get(dataset_id).list_files("*.yaml")
# Download & modify dataset
env['DIRS']['target'] = download_dataset(env, dataset_id)
dataset_file = os.path.join(env['DIRS']['target'], env['FILES'][dataset_id][0])
dataset_content = fix_dataset_path(dataset_file, env['DIRS']['target'])
args['data'] = os.path.join(env['DIRS']['target'], env['FILES'][dataset_id][0])
# Create a ClearML Task
task = Task.init(
project_name="LVGL UI Detector",
task_name=f"Train {model_variant} ({env['DATASETS'][dataset_id]['name']})",
task_type=Task.TaskTypes.training
)
task.connect(args)
# Log "model_variant" parameter to task
task.set_parameter("model_variant", model_variant)
task.set_parameter("dataset", dataset_id)
task.set_parameter("General/data", args['data'])
task.connect_configuration(name="Dataset YAML", configuration=args['data'])
task.connect_configuration(name="Dataset Content", configuration=dataset_content)
return task.id
76 Views
0
Answers
7 months ago
7 months ago