Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hi, I'Ve Run Into A Problem And Would Appreciate Some Help. I Installed Clearml Locally. When I Run A New Task On A Remote Server And In The Python Training Code I Set It To Only Train On One Gpu. Everything Works Fine And I See All The Scalars Automatica


Hi @<1779681046892122112:profile|EnviousHare17> and @<1774969995759980544:profile|SmoggyGoose12> ,

I run this code example:

# ClearML - Example of pytorch with tensorboard>=v1.14
#
from __future__ import print_function

import argparse
import os
from tempfile import gettempdir

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter

from clearml import Task


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(model, epoch, train_loader, args, optimizer, writer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data.item()))
            niter = epoch*len(train_loader)+batch_idx
            writer.add_scalar('Train/Loss', loss.data.item(), niter)


def test(model, test_loader, args, optimizer, writer):
    model.eval()
    test_loss = 0
    correct = 0
    for niter, (data, target) in enumerate(test_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').data.item()  # sum up batch loss
        pred = output.data.max(1)[1]  # get the index of the max log-probability
        pred = pred.eq(target.data).cpu().sum()
        writer.add_scalar('Test/Loss', pred, niter)
        correct += pred
        if niter % 100 == 0:
            writer.add_image('test', data[0, :, :, :], niter)

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    args = parser.parse_args()

    # Connecting ClearML with the current process,
    # from here on everything is logged automatically
    task = Task.init(project_name='examples', task_name='PyTorch with TensorBoard')  # noqa: F841

    writer = SummaryWriter('runs')
    writer.add_text('TEXT', 'This is some text', 0)
    args.cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    kwargs = {'num_workers': 4, 'pin_memory': True} if args.cuda else {}
    train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,
                                                              transform=transforms.Compose([
                                                                  transforms.ToTensor(),
                                                                  transforms.Normalize((0.1307,), (0.3081,))])),
                                               batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False,
                                                             transform=transforms.Compose([
                                                                 transforms.ToTensor(),
                                                                 transforms.Normalize((0.1307,), (0.3081,))])),
                                              batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net()
    if args.cuda:
        model = nn.DataParallel(model)  # Use all available GPUs
        model.cuda()

    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

    for epoch in range(1, args.epochs + 1):
        train(model, epoch, train_loader, args, optimizer, writer)
        m = torch.jit.script(model.module)  # Access the underlying model for scripting
        m.save(os.path.join(gettempdir(), 'model{}'.format(epoch)))
        #torch.save(model, os.path.join(gettempdir(), 'model{}'.format(epoch)))
    test(model, test_loader, args, optimizer, writer)


if __name__ == "__main__":
    # Hack for supporting Windows OS - 

    main()

With a 4 gpus machine, and got all the gpus stats (attached an image with the output).

Do you have some an example code that I can run for reproducing the issue? Can you try running this code and check if you are getting all gpus stats?
image

  
  
Posted 14 days ago
10 Views
0 Answers
14 days ago
14 days ago