Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Anyone Faced An Issue With Elasticsearch Before


That's a big context!
In general, I'm using standard functions; the script is running in SageMaker pipeline.
The model, however, is a composite, and consists of multiple primitive ones.


task = Task.init(
    project_name="icp",
    task_name=f"model_training_{client_name}",
    task_type=Task.TaskTypes.training,
    auto_connect_frameworks={'matplotlib': True, 'tensorflow': False, 
                             'tensorboard': False,
                            'pytorch': False, 'xgboost': False, 'scikit': False, 'fastai': False,
                            'lightgbm': False, 'hydra': True, 'detect_repository': True, 'tfdefines': False,
                            'joblib': False, 'megengine': False, 'catboost': False, 'gradio': False
    },
    output_uri=False
)

task.set_script(repository=repo_url, branch=branch_name, working_dir="./", commit=commit_id)
task.set_parameter("commit_id", commit_id)

task.connect_configuration()

output_model = OutputModel(task=task, name="trained_model")
output_model.update_weights(register_uri=s3_model_uri)

....

task = Task.current_task()
if task is None:
    print("Warning: No ClearML task found. Metrics will not be logged to ClearML.")
    logger = None
else:
    logger = task.get_logger()

logger.report_matplotlib_figure()
logger.report_scalar()
  
  
Posted 3 months ago
51 Views
0 Answers
3 months ago
3 months ago