Unanswered
Anyone Faced An Issue With Elasticsearch Before
That's a big context!
In general, I'm using standard functions; the script is running in SageMaker pipeline.
The model, however, is a composite, and consists of multiple primitive ones.
task = Task.init(
project_name="icp",
task_name=f"model_training_{client_name}",
task_type=Task.TaskTypes.training,
auto_connect_frameworks={'matplotlib': True, 'tensorflow': False,
'tensorboard': False,
'pytorch': False, 'xgboost': False, 'scikit': False, 'fastai': False,
'lightgbm': False, 'hydra': True, 'detect_repository': True, 'tfdefines': False,
'joblib': False, 'megengine': False, 'catboost': False, 'gradio': False
},
output_uri=False
)
task.set_script(repository=repo_url, branch=branch_name, working_dir="./", commit=commit_id)
task.set_parameter("commit_id", commit_id)
task.connect_configuration()
output_model = OutputModel(task=task, name="trained_model")
output_model.update_weights(register_uri=s3_model_uri)
....
task = Task.current_task()
if task is None:
print("Warning: No ClearML task found. Metrics will not be logged to ClearML.")
logger = None
else:
logger = task.get_logger()
logger.report_matplotlib_figure()
logger.report_scalar()
51 Views
0
Answers
3 months ago
3 months ago