Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Question About Pipeline And Long-Waiting Tasks: Say I Want To Generate A Dataset. The Workflow I Have Requires


AgitatedDove14 I tried your idea.
See code below.
Once the pipeline exists, I use the ui -> enqueue.
However it does seem to repeat the first task again when I (re) enqueue it.
Any ideas?
` from time import sleep

from clearml import PipelineDecorator, Task, TaskTypes

@PipelineDecorator.component(execution_queue='default', return_values=['message'], task_type=TaskTypes.data_processing)
def get_dateset_id():
message = "ccd8a65770e1407394cd3648246e4d25"
return message

@PipelineDecorator.component(execution_queue='default', return_values=['message2'], task_type=TaskTypes.data_processing)
def after(message):
message2 = message + "returned!!"
return message2

@PipelineDecorator.pipeline(name='try-aborting-and-restarting', project='classification-example', version='1.0', default_queue='default')
def logic():
message = get_dateset_id()
print(message)
from clearml import Dataset
ds = Dataset.get(dataset_id=message, dataset_tags='released')
if not ds or 'released' not in ds.tags:
print("aborting ourselves")
Task.current_task().mark_stopped()
# we will not get here, the agent will make sure we are stopped
sleep(60)
# better safe than sorry
exit(0)
message2 = after(message)
print(message2)

if name == 'main':
PipelineDecorator.run_locally()
logic() `

  
  
Posted 2 years ago
159 Views
0 Answers
2 years ago
one year ago
Tags