Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
When I Setup My Local Virtual Environment I Use A Combination Of Conda And Pip. I Use Conda As My Environment Manager, And Then Use Pip For Packages That Are Not In The Conda Repositories.


The following code is the training script that was used to setup the experiment. This code has been executed on the server in a separate conda environment and verified to run fine (minus the clearml code).

` from future import print_function, division
import os, pathlib

Clear ML experiment

from clearml import Task, StorageManager, Dataset

Local modules

from cub_tools.trainer import Ignite_Trainer
from cub_tools.args import get_parser
from cub_tools.config import get_cfg_defaults

Get the arguments from the command line, including configuration file and any overrides.

parser = get_parser()
parser.print_help()
args = parser.parse_args()

#print('[INFO] Optional Arguments from CLI:: {}'.format(args.opts))
#if args.opts == '[]':

args.opts = list()

print('[INFO] Setting empty CLI args to an explicit empty list')

CLEAR ML

Tmp config load for network name

cfg = get_cfg_defaults()
cfg.merge_from_file(args.config)

Connecting with the ClearML process

task = Task.init(project_name='Caltech Birds', task_name='Train PyTorch CNN on CUB200 using Ignite [Library: '+cfg.MODEL.MODEL_LIBRARY+', Network: '+cfg.MODEL.MODEL_NAME+']', task_type=Task.TaskTypes.training)

Add the local python package as a requirement

task.add_requirements('./cub_tools')
task.add_requirements('git+ ')

Setup ability to add configuration parameters control.

params = {'TRAIN.NUM_EPOCHS': 20, 'TRAIN.BATCH_SIZE': 32, 'TRAIN.OPTIMIZER.PARAMS.lr': 0.001, 'TRAIN.OPTIMIZER.PARAMS.momentum': 0.9}
params = task.connect(params) # enabling configuration override by clearml
print(params) # printing actual configuration (after override in remote mode)

Convert Params dictionary into a set of key value pairs in a list

params_list = []
for key in params:
params_list.extend([key,params[key]])

Execute task remotely

task.execute_remotely()

Get the dataset from the clearml-server and cache locally.

print('[INFO] Getting a local copy of the CUB200 birds datasets')

Train

train_dataset = Dataset.get(dataset_project='Caltech Birds', dataset_name='cub200_2011_train_dataset')
#train_dataset.get_mutable_local_copy(target_folder='./data/images/train')
print('[INFO] Default location of training dataset:: {}'.format(train_dataset.get_default_storage()))
train_dataset_base = train_dataset.get_local_copy()
print('[INFO] Default location of training dataset:: {}'.format(train_dataset_base))

Test

test_dataset = Dataset.get(dataset_project='Caltech Birds', dataset_name='cub200_2011_test_dataset')
#train_dataset.get_mutable_local_copy(target_folder='./data/images/train')
print('[INFO] Default location of testing dataset:: {}'.format(test_dataset.get_default_storage()))
test_dataset_base = test_dataset.get_local_copy()
print('[INFO] Default location of testing dataset:: {}'.format(test_dataset_base))

Amend the input data directories and output directories for remote execution

Modify experiment root dir

params_list = params_list + ['DIRS.ROOT_DIR', '']

Add data root dir

params_list = params_list + ['DATA.DATA_DIR', str(pathlib.PurePath(train_dataset_base).parent)]

Add data train dir

params_list = params_list + ['DATA.TRAIN_DIR', str(pathlib.PurePath(train_dataset_base).name)]

Add data test dir

params_list = params_list + ['DATA.TEST_DIR', str(pathlib.PurePath(test_dataset_base).name)]

Add working dir

params_list = params_list + ['DIRS.WORKING_DIR', str(task.cache_dir)]
print('[INFO] Task output destination:: {}'.format(task.get_output_destination()))

print('[INFO] Final parameter list passed to Trainer object:: {}'.format(params_list))

Create the trainer object

trainer = Ignite_Trainer(config=args.config, cmd_args=params_list) # NOTE: disabled cmd line argument passing but using it to pass ClearML configs.

Setup the data transformers

print('[INFO] Creating data transforms...')
trainer.create_datatransforms()

Setup the dataloaders

print('[INFO] Creating data loaders...')
trainer.create_dataloaders()

Setup the model

print('[INFO] Creating the model...')
trainer.create_model()

Setup the optimizer

print('[INFO] Creating optimizer...')
trainer.create_optimizer()

Setup the scheduler

trainer.create_scheduler()

Train the model

trainer.run() `

  
  
Posted 3 years ago
179 Views
0 Answers
3 years ago
one year ago