Unanswered
Hey,
We Are Using Clearml 1.9.0 With Transformers 4.25.1… And We Started Getting Errors That Do Not Reproduce In Earlier Versions (Only Works In 1.7.2 All 1.8.X Don’T Work):
@<1523701118159294464:profile|ExasperatedCrab78>
Here is an example that reproduces the second error
from clearml.automation import PipelineDecorator
from clearml import TaskTypes
@PipelineDecorator.component(task_type=TaskTypes.data_processing, cache=True)
def run_demo():
from transformers import AutoTokenizer, DataCollatorForTokenClassification, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import load_dataset
import numpy as np
import evaluate
from pathlib import Path
dataset = load_dataset("yelp_review_full")
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
small_train_dataset = dataset["train"].shuffle(seed=42).select(range(10))
small_eval_dataset = dataset["test"].shuffle(seed=42).select(range(10))
small_train_dataset = small_train_dataset.map(tokenize_function, batched=True)
small_eval_dataset = small_eval_dataset.map(tokenize_function, batched=True)
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
training_args = TrainingArguments(
output_dir="test_trainer",
evaluation_strategy="epoch",
# num_train_epoch=1,
)
metric = evaluate.load("accuracy")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
return Path('test_trainer')
@PipelineDecorator.component(task_type=TaskTypes.data_processing, cache=True)
def second_step(some_param):
print("Success!")
@PipelineDecorator.pipeline(name="StuffToDelete", project=".Dev", version="0.0.2", pipeline_execution_queue="aws_cpu")
def pipeline():
data = run_demo()
second_step(data)
if __name__ == '__main__':
PipelineDecorator.set_default_execution_queue("aws_cpu")
PipelineDecorator.run_locally()
pipeline()
182 Views
0
Answers
one year ago
one year ago