Unanswered
Hi All, I Was Trying To Use Clearml-Task To Run A Custom Docker(With Poetry To Install All The Python Dependencies And Activated The Environment) Using Clearml Gpu, But It Seems Like Clearml Always Create A Virtual Environment And Run The Python Script Fr
#
from typing import List, Optional, Tuple
import pyrootutils
import lightning
import hydra
from clearml import Task
from omegaconf import DictConfig, OmegaConf
from lightning import LightningDataModule, LightningModule, Trainer, Callback
from lightning.pytorch.loggers import Logger
pyrootutils.setup_root(__file__, indicator="pyproject.toml", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
# (so you don't need to force user to install project as a package)
# (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
# (which is used as a base for paths in "configs/paths/default.yaml")
# (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info:
# ------------------------------------------------------------------------------------ #
from src.utils.pylogger import get_pylogger
from src.utils.instantiators import instantiate_callbacks, instantiate_loggers
log = get_pylogger(__name__)
def train(cfg: DictConfig):
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
lightning.seed_everything(cfg.seed, workers=True)
log.info(f"Instantiating datamodule <{cfg.data._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating callbacks...")
callbacks: List[Callback] = instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers...")
logger: List[Logger] = instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)
if cfg.get("train"):
log.info("Starting training!")
trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))
if cfg.get("test"):
log.info("Starting testing!")
ckpt_path = trainer.checkpoint_callback.best_model_path
if ckpt_path == "":
log.warning("Best ckpt not found! Using current weights for testing...")
ckpt_path = None
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
log.info(f"Best ckpt path: {ckpt_path}")
@hydra.main(version_base="1.3", config_path="../../configs", config_name="train.yaml")
def main(cfg: DictConfig):
OmegaConf.set_struct(cfg, False) # allow cfg to be mutable
task = Task.init(project_name="fluoro-motion-detection", task_name="uniformer-test")
logger = task.get_logger()
logger.report_text("You can view your full hydra configuration under Configuration tab in the UI")
print(OmegaConf.to_yaml(cfg))
train(cfg)
if __name__ == "__main__":
main()
154 Views
0
Answers
one year ago
one year ago