Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Unanswered
Hi! I'M Running Launch_Multi_Mode With Pytorch-Lightning


Hi @<1578555761724755968:profile|GrievingKoala83> ! We have released clearml==1.16.3rc1 which should solve the issue now. Just specify task.launch_multi_node(nodes, devices=gpus) . For example:

import sys
import os
from argparse import ArgumentParser

import pytorch_lightning as pl
from pytorch_lightning.strategies.ddp import DDPStrategy
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from torchvision.datasets.mnist import MNIST

from clearml import Task


class LitClassifier(pl.LightningModule):
    def __init__(self, hidden_dim=128, learning_rate=1e-3):
        super().__init__()
        self.save_hyperparameters()

        self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim)
        self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10)

    def forward(self, x):
        x = x.view(x.size(0), -1)
        x = torch.relu(self.l1(x))
        x = torch.relu(self.l2(x))
        return x

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        self.log('valid_loss', loss)
        return loss

    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--hidden_dim', type=int, default=128)
        parser.add_argument('--learning_rate', type=float, default=0.0001)
        return parser


if __name__ == '__main__':
    Task.force_store_standalone_script()
    Task.add_requirements("./requirements.txt")
    pl.seed_everything(0)

    parser = ArgumentParser()
    parser.add_argument('--batch_size', default=32, type=int)
    parser.add_argument('--max_epochs', default=3, type=int)
    sys.argv.extend(['--max_epochs', '1'])
    parser = LitClassifier.add_model_specific_args(parser)
    args = parser.parse_args()

    task = Task.init(project_name="examples", task_name="pytorch lightning MNIST")
    task.execute_remotely(queue_name="Eugene2")
    nodes = 2
    gpus = 2
    config = task.launch_multi_node(nodes, devices=gpus, hide_children=True)
    print(os.environ)

    # ------------
    # data
    # ------------
    dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor())
    mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor())
    mnist_train, mnist_val = random_split(dataset, [55000, 5000])

    train_loader = DataLoader(mnist_train, batch_size=args.batch_size)
    val_loader = DataLoader(mnist_val, batch_size=args.batch_size)
    test_loader = DataLoader(mnist_test, batch_size=args.batch_size)

    model = LitClassifier(args.hidden_dim, args.learning_rate)

    ddp = DDPStrategy(process_group_backend="nccl")
    trainer = pl.Trainer(max_epochs=args.max_epochs, devices=gpus, num_nodes=nodes)
    trainer.fit(model, train_loader, val_loader)
  
  
Posted 5 months ago
59 Views
0 Answers
5 months ago
5 months ago