Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
How Can I Ensure Tasks In A Pipeline Have The Same Environment As The Pipeline Itself? It Seems A Bit Counter-Intuitive That The Pipeline (Executed Remotely) Captures The Local Environment, But The Tasks (Executed Remotely) Do Not Use That Same Environmen

How can I ensure tasks in a pipeline have the same environment as the pipeline itself? It seems a bit counter-intuitive that the pipeline (executed remotely) captures the local environment, but the tasks (executed remotely) do not use that same environment?

  
  
Posted one year ago
Votes Newest

Answers 42


For example:

my-repo @ git+
  
  
Posted one year ago

I think this is the main issue, is this reproducible ? How can we test that?

  
  
Posted one year ago

If you use this one for example, will the component have pandas as part of the requirement
None

def step_two(...):
    import pandas as pd
    # do stuff

If so (and it should), what's the difference, where is "internal.repo " different from pandas ?

  
  
Posted one year ago

Alternatively, it would be good to specify both some requirements and auto-detect šŸ¤”

  
  
Posted one year ago

It is. In what format should I specify it? Would this enforce that package on various components? Would it then no longer capture import statements?

  
  
Posted one year ago

ā€¦ And itā€™s failing on typing hints for functions passed in pipe.add_function_step(ā€¦, helper_function=[ā€¦]) ā€¦ I guess those arenā€™t being removed like the wrapped function step?

  
  
Posted one year ago

Still; anyone? šŸ„¹ @<1523701070390366208:profile|CostlyOstrich36> @<1523701205467926528:profile|AgitatedDove14>

  
  
Posted one year ago

Well the individual tasks do not seem to have the expected environment.

  
  
Posted one year ago

Yes, for example.

  
  
Posted one year ago

How or why is this the issue? I great something is getting lost in translation :D
On the local machine, we have all the packages needed. The code gets sent for remote execution, and all the local packages are frozen correctly with pip.
The pipeline controller task is then generated and executed remotely, and it has all the relevant packages.
Each component it launches, however, is missing the internal packages available earlier :(

  
  
Posted one year ago

is this repo installed on the machine creating the pipeline ?
You can also manually add it here `packages={"link_to_internal_python_package",]
None

  
  
Posted one year ago

We can change the project nameā€™s of course, if thereā€™s a suggestion/guide that will make them see past the namespaceā€¦

  
  
Posted one year ago

It is installed on the pipeline creating the machine.
I have no idea why it did not automatically detect it šŸ˜ž

  
  
Posted one year ago

Exactly, it should have auto-detected the package.

  
  
Posted one year ago

  • This then looks for a module called foo , even though itā€™s just a namespaceI think this is the issue, are you using python package name spaces ?
    (this is a PEP feature that is really rarely used, and I have seen break too many times)
    Assuming you have from from foo.mod import what are you seeing in pip freeze ? I'd like to see if we can fix this, and better support namespaces
  
  
Posted one year ago

None
This example ?

  
  
Posted one year ago

And is this repo installed on the pipeline creating machine ?
Basically I'm asking how come it did not automatically detect it?

  
  
Posted one year ago

The only thing I could think of is that the output of pip freeze would be a URL?

  
  
Posted one year ago

Yes. Though again, just highlighting the naming of foo-mod is arbitrary. The actual module simply has a folder structured with an implicit namespace:

foo/
  mod/
    __init__.py
    # stuff

FWIW, for the time being Iā€™m just setting the packages to all the packages the pipeline tasks sees with:

    packages = get_installed_pkgs_detail()
    packages = [f"{name}=={version}" if version else name for name, version in packages.values()]
    packages = task.data.script.requirements.get('pip', task.data.script.requirements.get('poetry')) or packages
    print(f"Task requirements:\n{packages}")
    tmp_requirements_file = "tmp_reqs.txt"
    with open(tmp_requirements_file, "w") as f:
        f.write("\n".join(packages) if isinstance(packages, list) else packages)
    
    # ...
    
    pipe.add_function_step(..., packages=tmp_requirements_file)
  
  
Posted one year ago

There's no decorator, just e.g.

def helper(foo: Optional[Any] = None):
    return foo

def step_one(...):
    # stuff

Then the type hints are not removed from helper and the code immediately crashes when being run

  
  
Posted one year ago

Pinging about this still, unresolved šŸ¤”

ClearML does not capture our internal libraries and so our functions (pipeline steps) crash with missing modules.

  
  
Posted one year ago

I have no idea whatā€™s the difference, but it does not log the internal repository šŸ˜ž If I knew why, I would be able to solve it myselfā€¦ hehe

  
  
Posted one year ago

There's code that strips the type hints from the component function, just think it should be applied to the helper functions too :)

  
  
Posted one year ago

Iā€™d like to refrain from manually specifying the dependencies, since it adds a lot of overhead to extend

  
  
Posted one year ago

So from foo.mod import "translates" to foo-mod @ git+ None .. ?

  
  
Posted one year ago

Using the PipelineController with add_function_step

  
  
Posted one year ago

Hey @<1523701205467926528:profile|AgitatedDove14> , thanks for the reply!

We would like to avoid dockerizing all our repositories. And for the time being we have not used the decorators, but we can do that too.
The pipeline is instead built dynamically at the moment.

The issue is that the components do not have their dependency. For example:

def step_one(...):
    from internal.repo import private
    # do stuff

When step_one is added as a component to the pipeline, it does not include the ā€œinternal.repoā€ as a package dependency, so it crashes.

  
  
Posted one year ago

Hi UnevenDolphin73 , when you say pipeline itself you mean the controller? The controller is only in charge of handling the components. Lets say you have a pipeline with many parts. If you have a global environment then it will force a lot of redundant installations through the pipeline. What is your use case?

  
  
Posted one year ago

Weā€™d be happy if ClearML captures that (since it uses e.g. pip, then we have the git + commit hash for reproducibility), as it claims it would šŸ˜…

Any thoughts CostlyOstrich36 ?

  
  
Posted one year ago

not sure about this, we really like being in control of reproducibility and not depend on the invoking machineā€¦ maybe thatā€™s not what you intend

  
  
Posted one year ago