sometimes I get "lucky" and see something more like what I expect... total experiment time < 1 min (and I have evidence of this happening. logs start-to-finish in sub-minute). But then other times the same task will take 5-10 minutes.
same worker, same queue, just one worker serving it... I am so utterly perplexed by the variation in how long things take. my clearml API server is running on a beefy 32 core machine and not much else is happening right now...
i just need to understand what I should be expecting. I thought from putting it into queue in UI to "running my code remotely" (esp with packages preloaded) should be fairly fast turnaround - certainly not three minutes... i'll have to change my whole pipeline design if this is the case)
are you on clearml agent 1.8.0?
(im noticing sometimes im just missing logs such as "Running task id.." entirely)
I know that git clone and pip verify all installed is normal. But for some reason in Michael screenshot, I don't see those steps ...
fwiw - i'm starting to wonder if there's a difference between me "resetting the task" vs cloning it.
oh it's there, before running task.
from task pick-up to "git clone" is now ~30s, much better.
though as far as I understand, the recommendation is still to not run workers-in-docker like this:
export CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1
export CLEARML_AGENT_SKIP_PIP_VENV_INSTALL=$(which python)
(and fwiw I have this in my entrypoint.sh
)
cat <<EOF > ~/clearml.conf
agent {
vcs_cache {
enabled: true
}
package_manager: {
type: pip,
system_site_packages: true,
}
}
EOF
there is almost zero overhead if your docker container alreadyt has everything (including the agent) preinstalled and you set it with CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1
it then should basically just run the code.
i really dont see how this provides any additional context that the timestamps + crops dont but okay.
okay that's a similar setup to mine... that's interesting.
much more in line with my expectation.
what if the preexisting venv is just the system python? my base image is python:3.10.10 and i just pip install all requirements in that image. Does that not avoid venv still?
it will basically create a new venv inside the container forking the existing preinistalled stuff (i.e. the new venv already has everything the python system has preinstalled)
then it will call "pip install" on all the "installed packages of the Task.
Which should just check everything is there and install nothing
If you set " CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1" it will do checks and just use the existing system python environment as is.
, I can get 50 tasks to run in the same time it takes to run a single one? i cant imagine the apiserver being a noticeable bottleneck.
50 containers on a single machine would be fine if you have enough RAM/CPU, and yes they would run concurrently.
regrading the time itself, again the spinup time of a Task should be negligible.
Pipeline tasks are not meant to be "threads" they are meant as different functions you want to run on different machines,
This means that if your pipeline is just a set of simple functions that require no cpu/gpu or IO, I'm not sure pipeline steps is the right way to go
Does that make sense?
BTW: you can also just add -e "
CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"
to the docker args (under the Execution tab) to override the setting of the docker.
you can also add " export;
" to the docker startup bash script section (do not add "#/bin/bash" , just the actual script) to get a list of all the environment variables inside the docker, just in case
normally when new package need to be install, it shows up in the Console tab
ha! yup. that was it exactly. I posted about it too None lol
So "Using env ..." take minutes without any output ?
im not running in docker mode though - im running a clearml worker in a docker container (and then multiplying the container)
minute of silence between first two msgs and then two more mins until a flood of logs. Basically 3 mins total before this task (which does almost nothing - just using it for testing) starts.
hard to see with your croppout here an there ...
clearml==1.12.2
clearml_agent v1.8.1rc2
i would love some advice on that though - should I be using services mode + docker and some max # of instances to be spinning up multiple tasks instead?
my thinking was to avoid some of the docker overhead. but i did try this approach previously and found that the container limit wasn't exactly respected.
in my case using self-hosted and agent inside a docker container:
47:45 : taks foo pulled
[ git clone, pip install, check that all requirements satisfied, and nothing is downloaded]
48:16 : start training
Hi Guys, just curious here, what's was the final issue?
Also out of curiosity, what does that mean? "1.12.2 because some bug that make fastai lag 2x" ?
def seeing some that took 7-8 mins whereas others 2-3...
im not running in docker mode though
hmmm that might be the first issue. it cannot skip venv creation, it can however use a pre-existing venv (but it will change it every time it installs a missing package)
so setting CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1 in non docker mode has no affect
oooh thank you, i was hoping for some sort of debugging tips like that. will do.
from a speed-of-clearing-a-queue perspective, is a services-mode
queue better or worse than having many workers "always up"?
but pretty reliably some proportion of tasks still just take a much longer time. 1m - 10m is a variance i'd really like to understand.
from the logs, it feels like after git clone, it spend minutes without outputting anything. AgitatedDove14 Do you know what is the agent suppose to do after git clone ?
I guess a check that all packages is installed ? But then with CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1, what is the agent doing ??
I think a proper screenshot of the full log with some information redacted is the way to go. Otherwise we are just guessing in the dark
oh yes. Using env
until the next message is 2 minutes.
SmallTurkey79 could you attach the full log of the Task?
also I would recommend "export CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1" (not true
)
Usually binary env vars are 0/1
(I can see that the docs here: None
never mention it, I'll ask them to add that)
is there a way for me to toggle CLEARML's log level? I'm doing some manual task-debugging in ipython and think it would be helpful to see network requests and timeouts if they're occurring.