Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
What Sort Of Integration Is Possible With Clearml And Sagemaker? On The Page

What sort of integration is possible with ClearML and SageMaker? On the page describing ClearML Remote it says:

Create a remote development environment (e.g. AWS SageMaker, GCP CoLab, etc.) on any on-prem machine or any cloud.

But the only mention of SageMaker I see in the docs is the release notes for 0.13 saying "Add support for SageMaker".

I have SageMaker Studio up and running with access to my ClearML server and it's successfully able to log plots and scalars from experiments, but in terms of code it just logs the code used to launch the kernel:

"""Entry point for launching an IPython kernel.
This is separate from the ipykernel package so we can avoid doing imports until
after removing the cwd from sys.path.
"""
import sys

if __name__ == '__main__':
    # Remove the CWD from sys.path while we load stuff.
    # This is added back by InteractiveShellApp.init_path()
    if sys.path[0] == '':
        del sys.path[0]
    from ipykernel import kernelapp as app
    app.launch_new_instance()

Is it possible to capture more than that while using SageMaker?

  
  
Posted one year ago
Votes Newest

Answers 77


sh-4.2$ cat /var/log/studio/kernel_gateway.log | head -n10
{"__timestamp__": "2023-02-23T21:48:28.036559Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0012829303741455078, "method": "GET", "uri": "/api", "status": 200}
{"__timestamp__": "2023-02-23T21:48:39.111068Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0012879371643066406, "method": "GET", "uri": "/api/kernels", "status": 200}
{"__timestamp__": "2023-02-23T21:48:39.116324Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0007715225219726562, "method": "GET", "uri": "/api/terminals", "status": 200}
{"__timestamp__": "2023-02-23T21:48:39.272822Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0007491111755371094, "method": "GET", "uri": "/api/terminals", "status": 200}
{"__timestamp__": "2023-02-23T21:48:43.000795Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 2.539133071899414, "method": "POST", "uri": "/api/kernels", "status": 201}
{"__timestamp__": "2023-02-23T21:48:43.073568Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0013430118560791016, "method": "GET", "uri": "/api/kernels/6ba227af-ff2c-4b20-89ac-86dcac95e2b2", "status": 200}
{"__timestamp__": "2023-02-23T21:48:43.469751Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0013761520385742188, "method": "GET", "uri": "/api/kernels/6ba227af-ff2c-4b20-89ac-86dcac95e2b2", "status": 200}
{"__timestamp__": "2023-02-23T21:48:43.702549Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0013780593872070312, "method": "GET", "uri": "/api/kernels/6ba227af-ff2c-4b20-89ac-86dcac95e2b2", "status": 200}
{"__timestamp__": "2023-02-23T21:48:43.986808Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0007445812225341797, "method": "GET", "uri": "/api/kernels/6ba227af-ff2c-4b20-89ac-86dcac95e2b2", "status": 200}
{"__timestamp__": "2023-02-23T21:48:43.992860Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.001028299331665039, "method": "GET", "uri": "/api/kernels", "status": 200}
  
  
Posted one year ago

api/kernels does report back the active kernel, but doesn't give notebook paths or anything

  
  
Posted one year ago

Yes, I'm running a notebook in Studio. Where should it be captured?

  
  
Posted one year ago

lots of things like {"__timestamp__": "2023-02-23T23:49:23.285946Z", "__schema__": "sagemaker.kg.request.schema", "__schema_version__": 1, "__metadata_version__": 1, "account_id": "", "duration": 0.0007679462432861328, "method": "GET", "uri": "/api/kernels/6ba227af-ff2c-4b20-89ac-86dcac95e2b2", "status": 200}

  
  
Posted one year ago

Try to add here:
None

server_info['url'] = f"http://{server_info['hostname']}:{server_info['port']}/"
  
  
Posted one year ago

curious whether it impacts anything besides sagemaker. I'm thinking it's generically a kernel gateway issue, but I'm not sure if other platforms are using that yet

  
  
Posted one year ago

but the call to jupyter_server.serverapp.list_running_servers() does return the server

  
  
Posted one year ago

This is very odd ... let me check something

  
  
Posted one year ago

yep

  
  
Posted one year ago

if there are any tests/debugging you'd like me to try, just let me know

  
  
Posted one year ago

Hi @<1532532498972545024:profile|LittleReindeer37>
Yes you are correct it should capture the entire jupyter notebook in sagemaker studio.
Just verifying this is the use case, correct ?

  
  
Posted one year ago

but the only exception handler is for requests.exceptions.SSLError

  
  
Posted one year ago

Hmm and you are getting empty list for thi one:

server_info['url'] = f"http://{server_info['hostname']}:{server_info['port']}/"
  
  
Posted one year ago

but even then the sessions endpoint is still empty

  
  
Posted one year ago

but one possible workaround is to try to figure out if it's running in a gateway and then find the only notebook running on that server

  
  
Posted one year ago

so notebooks ends up empty

  
  
Posted one year ago

if I add the base_url it's not found

  
  
Posted one year ago

if I change it to 0.0.0.0 it works

  
  
Posted one year ago

nope, that's wrong

  
  
Posted one year ago

environ{'PYTHONNOUSERSITE': '0',
        'HOSTNAME': 'gfp-science-ml-t3-medium-d579233e8c4b53bc5ad626f2b385',
        'AWS_CONTAINER_CREDENTIALS_RELATIVE_URI': '/_sagemaker-instance-credentials/xxx',
        'JUPYTER_PATH': '/usr/share/jupyter/',
        'SAGEMAKER_LOG_FILE': '/var/log/studio/kernel_gateway.log',
        'PATH': '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/tmp/miniconda3/condabin:/tmp/anaconda3/condabin:/tmp/miniconda2/condabin:/tmp/anaconda2/condabin',
        'REGION_NAME': 'us-east-1',
        'AWS_INTERNAL_IMAGE_OWNER': 'Custom',
        'AWS_DEFAULT_REGION': 'us-east-1',
        'PWD': '/home/sagemaker-user',
        'AWS_REGION': 'us-east-1',
        'SHLVL': '1',
        'HOME': '/home/sagemaker-user',
        'AWS_SAGEMAKER_PYTHONNOUSERSITE': '0',
        'AWS_ACCOUNT_ID': 'xxx',
        '_': '/opt/.sagemakerinternal/conda/bin/jupyter-kernelgateway',
        'LC_CTYPE': 'C.UTF-8',
        'KERNEL_LAUNCH_TIMEOUT': '40',
        'KERNEL_WORKING_PATH': '',
        'KERNEL_GATEWAY': '1',
        'JPY_PARENT_PID': '9',
        'PYDEVD_USE_FRAME_EVAL': 'NO',
        'TERM': 'xterm-color',
        'CLICOLOR': '1',
        'FORCE_COLOR': '1',
        'CLICOLOR_FORCE': '1',
        'PAGER': 'cat',
        'GIT_PAGER': 'cat',
        'MPLBACKEND': '
_inline'}
  
  
Posted one year ago

I will once I figure out the fix!

  
  
Posted one year ago

I think it just ends up in /home/sagemaker-user/{notebook}.ipynb every time

  
  
Posted one year ago

so notebook path is empty

  
  
Posted one year ago

What happens when you call:

from clearml.backend_interface.task.repo import ScriptInfo

print(ScriptInfo._ScriptInfo__legacy_jupyter_notebook_server_json_parsing(None))
  
  
Posted one year ago

and cat /var/log/studio/kernel_gateway.log | grep ipynb comes up empty

  
  
Posted one year ago

sadly no

  
  
Posted one year ago

print(os.environ)
  
  
Posted one year ago

if I instead change the request url to f"http://{server_info['hostname']}:{server_info['port']}/api/sessions" then it gets a 200 response... however , the response is an empty list

  
  
Posted one year ago

still empty
image

  
  
Posted one year ago

it does return kernels, just not sessions

  
  
Posted one year ago
43K Views
77 Answers
one year ago
one year ago
Tags
Similar posts