It seems similar to this None is it possible saving too many model weights causes metric logging thread to die?
Hi @<1719524641879363584:profile|ThankfulClams64> ,the logging is done by a separate process, I'm pretty sure it's not terminating all of the sudden. Did you manage to get a full log of such an experiment to share?
Just to make sure, did the logging to the clearml server work previously and stoped working at some point?
Hi we are currently having the issue. There is nothing in the console regarding ClearML besides
ClearML Task: created new task id=0174d5b9d7164f47bd10484fd268e3ff
======> WARNING! Git diff too large to store (3611kb), skipping uncommitted changes <======
ClearML results page:
The console logs continue to come in put no scalers or debug images show up.
I do have uncommitted code changes. I can try to check at some point if it would not have the problem without them. It seems like it could be repeated just by making a git repo with that script and adding a very large file. If I can repeat it is it best to open an issue in GitHub?
Yes it shows on the UI and has the first epoch for some of the metrics but that's it. It has run like 50 epochs, it says it is still running but there are no updates to the scalars or debug samples
sometimes I get no scalars, but the console logging always seems to be working
Not sure if this is helpful but this is what I get when I cntrl-c out of the hung script
^C^CException ignored in atexit callback: <bound method Reporter._handle_program_exit of <clearml.backend_interface.metrics.reporter.Reporter object at 0x70fd8b7ff1c0>>
Event reporting sub-process lost, switching to thread based reporting
Traceback (most recent call last):
File "/home/richard/.virtualenvs/temp_clearml/lib/python3.10/site-packages/clearml/backend_interface/metrics/reporter.py", line 317, in _handle_program_exit
self.wait_for_events()
File "/home/richard/.virtualenvs/temp_clearml/lib/python3.10/site-packages/clearml/backend_interface/metrics/reporter.py", line 337, in wait_for_events
return report_service.wait_for_events(timeout=timeout)
File "/home/richard/.virtualenvs/temp_clearml/lib/python3.10/site-packages/clearml/backend_interface/metrics/reporter.py", line 129, in wait_for_events
if self._empty_state_event.wait(timeout=1.0):
File "/home/richard/.virtualenvs/temp_clearml/lib/python3.10/site-packages/clearml/utilities/process/mp.py", line 445, in wait
return self._event.wait(timeout=timeout)
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 349, in wait
self._cond.wait(timeout)
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 261, in wait
return self._wait_semaphore.acquire(True, timeout)
KeyboardInterrupt:
The machine currently having the issue is on tensorboard==2.16.2
Then we also connect two dictionaries for configs
task.connect(model_config)
task.connect(DataAugConfig)
I am using 1.15.0. Yes I can try with auto_connect_streams set to True I believe I will still have the issue
What happens if you're running the reporting example from the ClearML github repository?
I will try with clearml==1.16.3rc2 and see if it still has the issue
Hi @<1719524641879363584:profile|ThankfulClams64>
I am using ClearML Pro and pretty regularly I will restart an experiment and nothing will get logged to ClearML.
I use ClearML with pytorch 1.7.1, pytorch-lightning 1.2.2 and Tensorboard auto
All ClearML has the latest stable updates. (clearml 1.7.4, clearml-agent 1.7.2)
Is this still happening with the latest clearml ( clearml==1.16.3rc2
) ?
What is the TB version?
I remember a fix regrading lightining support
Also just making sure, are you using the default lightning TB logger ?
How are you initializing the Task.init
(i.e. could you copy here the code?)
If you remove any reference of ClearML from the code on that machine, does it still hang?
The console logging still works. Aborting the task was in the log but did not work and the process continued until I killed it.
This was on the same machine I am having issues with it logs scalars correctly using the example code, but when I add in that callback which just logs a random image to tensorboard I don't get any scalars logged
Is there someway to kill all connections of a machine to the ClearML server this does seem to be related to restarting a task / running a new task quickly after a task fails or is aborted
STATUS MESSAGE: N/A
STATUS REASON: Signal None
Yes tensorboard. It is still logging the tensorboard scalers and images. It just doesn't log the console output
So I am only seeing values for the first epoch. It seems like it does not track all of them so maybe something is happening when it tries to log scalars.
I have seen it only log iterations but setting task.set_initial_iteration(0)
seemed to fix that so it now seems to be logging the correct epoch
Tensorboard is correct and works. I have never seen an issue in the tensorboard logs
I am still having this issue. An update is that the "abort" does not work. Even though the state is correctly tracked in ClearML when I try to abort the experiment through the UI it says it does it but the experiment remains running on the computer.
I am on 1.16.2
task = Task.init(project_name=model_config['ClearML']['project_name'],
task_name=model_config['ClearML']['task_name'],
continue_last_task=False,
auto_connect_streams=True)
It is still getting stuck. I think the issue might have something to do with the iterations versus epochs. I notice that one of the scalars that gets logged early is logging the epoch while the remaining scalars seem to be iterations because the iteration value is 1355 instead of 26
task.connect(model_config)
task.connect(DataAugConfig)
If these are separate dictionaries , you should probably use two sections:
task.connect(model_config, name="model config")
task.connect(DataAugConfig, name="data aug")
It is still getting stuck.
I notice that one of the scalars that gets logged early is logging the epoch while the remaining scalars seem to be iterations because the iteration value is 1355 instead of 26
wait so you are seeing Some scalars ?
while the remaining scalars seem to be iterations because the iteration value is 1355 instead of 26
what are you seeing in your TB?
So even if you abort it on the start of the experiment it will keep running and reporting logs?
I'm not sure how to even troubleshoot this.
There is clearly some connection to the ClearML server as it remains "running" the entire training session but there are no metrics or debug samples. And I see nothing in the logs to indicate there is an issue
Not sure why that is related to saving images