Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
Hi Team, I Am Trying To Run A Pipeline Remotely Using Clearml Pipeline And I’M Encountering Some Issues. Could Anyone Please Assist Me In Resolving Them?

Hi Team,

I am trying to run a pipeline remotely using ClearML pipeline and I’m encountering some issues. Could anyone please assist me in resolving them?

Issue 1 : After executing the code, the pipeline is initiated on the “queue_remote_start” queue and the tasks of the pipeline are initiated on the “queue_remote” queue. However, the creation of the dataset failed because it couldn’t find the Python modules from the current directory.

Issue 2 : I also attempted to use the same queue for both pipe.start and pipe.set_default_execution_queue . However, the tasks of the pipeline remained in the pending and queued state and didn’t proceed to the next step.

To run the pipeline remotely, I have created two different queues and assigned a worker to each using the following commands:

clearml-agent daemon --detached --create-queue --queue queue_remote
clearml-agent daemon --detached --create-queue --queue queue_remote_start

I then executed the following command to run the pipeline remotely:

python3 pipeline.py

The code for the Pipeline from Functions is as follows:

# Create the PipelineController object
    pipe = PipelineController(
        name="pipeline",
        project=project_name,
        version="0.0.2",
        add_pipeline_tags=True,
    )

pipe.set_default_execution_queue('queue_remote')

pipe.add_function_step(
    name='step_one',
    function=step_one,
    function_kwargs={
            "train_file": constants.TRAINING_DATASET_PATH,
            "validation_file": constants.VALIDATAION_DATASET_PATH,
            "s3_output_uri": constants.CLEARML_DATASET_OUTPUT_URI,
            "dataset_project": project_name,
            "dataset_name": constants.CLEARML_TASK_NAME,
            "use_dummy_dataset": use_dummy_model_dataset,
        },
        project_name=project_name,
        task_name=create_dataset_task_name,
        task_type=Task.TaskTypes.data_processing,
    )

pipe.start(queue="queue_remote_start")

Could anyone please provide a solution on how to successfully run the pipeline remotely? Any help would be greatly appreciated.

  
  
Posted one year ago
Votes Newest

Answers 39


what about import clearml; print(clearml.__version__)

  
  
Posted one year ago

@<1626028578648887296:profile|FreshFly37> can you share also logs of task ? It may give an idea.

  
  
Posted one year ago

@<1657556312684236800:profile|ManiacalSeaturtle63> can you share how you are creating your pipeline?

  
  
Posted one year ago

@<1523701435869433856:profile|SmugDolphin23> I retry the same scenario with clearml==1.14.1 package but still it does not show me the pipelines not showing in the UI :(

  
  
Posted one year ago

@<1626028578648887296:profile|FreshFly37> can you please screenshot this section of the task? Also, how does your project's directory structure look like?
image

  
  
Posted one year ago

what do you get when you run this code?

from clearml.backend_api import Session
print(Session.check_min_api_server_version("2.17"))
  
  
Posted one year ago

@<1523701435869433856:profile|SmugDolphin23> , I’ve updated both the ClearML server and client to the latest version, 1.14.0, as per our previous conversation. However, I’m still encountering the same issue as described earlier.
WebApp: 1.14.0-431
Server: 1.14.0-431
API: 2.28

I attempted to use the same queue for both the controller and the steps, and assigned two workers to this queue. Upon executing the code, the pipeline was initiated on the “queue_remote” queue, and the tasks of the pipeline were also initiated on another worker in the “queue_remote” queue. However, the dataset creation failed because it was unable to locate the Python modules from the current directory as shown in the below screenshot.

Note: I stored the code and its dependencies in a GitHub repository when I executed the pipeline.

Please refer to the attached error screenshot and the code I used to run the pipeline for more details
image

  
  
Posted one year ago

sure, I'll add those details & check. Thank you

  
  
Posted one year ago

This print string like in below. """
if not self._task:
task_name = name or project or '{}'.format(datetime.now())
if self._pipeline_as_sub_project:
parent_project = (project + "/" if project else "") + self._pipeline_section
project_name = "{}/{}".format(parent_project, task_name)
else:
parent_project = None
project_name = project or 'Pipelines'
# if user disabled the auto-repo, we force local script storage (repo="" or repo=False) """

  
  
Posted one year ago
123K Views
39 Answers
one year ago
one year ago
Tags
Similar posts