Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
Hi, I'Ve Run Into A Problem And Would Appreciate Some Help. I Installed Clearml Locally. When I Run A New Task On A Remote Server And In The Python Training Code I Set It To Only Train On One Gpu. Everything Works Fine And I See All The Scalars Automatica

Hi, I've run into a problem and would appreciate some help. I installed clearml locally. When I run a new task on a remote server and in the Python training code I set it to only train on one GPU. Everything works fine and I see all the scalars automatically in the clearml web ui. But as soon as I change the training to run on 2 GPUs on my server, the training works but no scalars appear in the webui.

  
  
Posted one month ago
Votes Newest

Answers 25


Can you attach the console log? What GPUs are you using? I assume nvidia-smi runs without issue?

  
  
Posted one month ago

I use in clearml-agent the --gpus 0,1 flag.
And also i dont use docker mode. I use virtual env mode.

  
  
Posted one month ago

Just to make sure we're on the same page, you're referring the machine statistics or ALL scalars don't show up?

  
  
Posted one month ago

I see. Can you provide a simple stand alone code snippet that reproduces this behaviour for you?

  
  
Posted one month ago

  1. And yes - we see only the two monitoring parameters
  
  
Posted 14 days ago

Hi @<1774969995759980544:profile|SmoggyGoose12> , I think that selecting GPUs works only in docker mode.

  
  
Posted one month ago

thanks, checking it

  
  
Posted 14 days ago

Clearml-agent on worker: 1.9.2
Clearml on my computer: 1.16.4

2 gpus - NVIDIA GeForce RTX 3080

I reffer to only the training statistic, in the scalars tab. I can see the monitoring of the gpu's and cpu, memory...

Also i will say again then with only one gpu in the training everything is working great.

  
  
Posted one month ago

Hi, i still have this problem. and would appreciate some help with it.

  
  
Posted 14 days ago

it does work...

  
  
Posted 7 days ago

@<1523701070390366208:profile|CostlyOstrich36> ?

  
  
Posted 19 days ago

Also, what GPUs are you running on that machine?

  
  
Posted one month ago

What versions of clearml-agent & clearml are you using? Is it a self hosted server?

  
  
Posted one month ago

To continue Ido's question - we use the following command:

  
  
Posted 21 days ago

In our training, we build on Facebook's Detectron2, the events file is created fine, we do see everything in the tensorboard UI, but when using multi GPU we don't see anything in the stated UI windows and clearML states it also doesn't find the iteration number from the code.

  
  
Posted 7 days ago

What is the command you used to run the agent?

  
  
Posted one month ago

No, i have one queue, with one server in that queue. This server have 2 gpus. Using my training code i can choose if i use 2 gpus or just one in the training....

  
  
Posted one month ago

Hi @<1779681046892122112:profile|EnviousHare17> and @<1774969995759980544:profile|SmoggyGoose12> ,

I run this code example:

# ClearML - Example of pytorch with tensorboard>=v1.14
#
from __future__ import print_function

import argparse
import os
from tempfile import gettempdir

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter

from clearml import Task


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(model, epoch, train_loader, args, optimizer, writer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data.item()))
            niter = epoch*len(train_loader)+batch_idx
            writer.add_scalar('Train/Loss', loss.data.item(), niter)


def test(model, test_loader, args, optimizer, writer):
    model.eval()
    test_loss = 0
    correct = 0
    for niter, (data, target) in enumerate(test_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').data.item()  # sum up batch loss
        pred = output.data.max(1)[1]  # get the index of the max log-probability
        pred = pred.eq(target.data).cpu().sum()
        writer.add_scalar('Test/Loss', pred, niter)
        correct += pred
        if niter % 100 == 0:
            writer.add_image('test', data[0, :, :, :], niter)

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    args = parser.parse_args()

    # Connecting ClearML with the current process,
    # from here on everything is logged automatically
    task = Task.init(project_name='examples', task_name='PyTorch with TensorBoard')  # noqa: F841

    writer = SummaryWriter('runs')
    writer.add_text('TEXT', 'This is some text', 0)
    args.cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    kwargs = {'num_workers': 4, 'pin_memory': True} if args.cuda else {}
    train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,
                                                              transform=transforms.Compose([
                                                                  transforms.ToTensor(),
                                                                  transforms.Normalize((0.1307,), (0.3081,))])),
                                               batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False,
                                                             transform=transforms.Compose([
                                                                 transforms.ToTensor(),
                                                                 transforms.Normalize((0.1307,), (0.3081,))])),
                                              batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net()
    if args.cuda:
        model = nn.DataParallel(model)  # Use all available GPUs
        model.cuda()

    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

    for epoch in range(1, args.epochs + 1):
        train(model, epoch, train_loader, args, optimizer, writer)
        m = torch.jit.script(model.module)  # Access the underlying model for scripting
        m.save(os.path.join(gettempdir(), 'model{}'.format(epoch)))
        #torch.save(model, os.path.join(gettempdir(), 'model{}'.format(epoch)))
    test(model, test_loader, args, optimizer, writer)


if __name__ == "__main__":
    # Hack for supporting Windows OS - 

    main()

With a 4 gpus machine, and got all the gpus stats (attached an image with the output).

Do you have some an example code that I can run for reproducing the issue? Can you try running this code and check if you are getting all gpus stats?
image

  
  
Posted 14 days ago

@<1774969995759980544:profile|SmoggyGoose12> how do you report the scalars? with tb SummaryWriter?

In the UI, if you click the eye symbol, you have only the monitoring options?
image

  
  
Posted 14 days ago

We will try it out on our end and let you know. Thanks!!! FYI @<1774969995759980544:profile|SmoggyGoose12>

  
  
Posted 14 days ago

Yes no issue with nvidia-smi, it recognize the 2 gpu's and successfuly use them for the training. The only problem is the metrics, scalars in the ui when i use 2 gpus

  
  
Posted one month ago

@<1744891825086271488:profile|RoundElephant20> 1. We use Tensorboard SummaryWriter

  
  
Posted 14 days ago

Even when i dont add the --gpus flag, it doesnt work.

  
  
Posted one month ago

You have two queues, one for 1xGPU and the other for 2xGPU, two workers on the GPU machine are running with each listening to the relevant queue. Is that the setup?

  
  
Posted one month ago

and that's it

  
  
Posted 14 days ago