Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
Hey, We Are Using Clearml 1.9.0 With Transformers 4.25.1… And We Started Getting Errors That Do Not Reproduce In Earlier Versions (Only Works In 1.7.2 All 1.8.X Don’T Work):

Hey,
We are using clearml 1.9.0 with transformers 4.25.1… and we started getting errors that do not reproduce in earlier versions (only works in 1.7.2 all 1.8.x don’t work):

File "/tmp/tmp0you5mai.py", line 29, in train_entity_exraction_model train(source=source_path.absolute(), output=model_output_path.absolute(), seed=seed, **entity_extraction_trainer) File "/usr/src/lib/entity_extractions/train.py", line 74, in train trainer.train() File "/opt/conda/lib/python3.10/site-packages/transformers/trainer.py", line 1527, in train return inner_training_loop( File "/opt/conda/lib/python3.10/site-packages/transformers/trainer.py", line 1704, in _inner_training_loop self.control = self.callback_handler.on_train_begin(args, self.state, self.control) File "/opt/conda/lib/python3.10/site-packages/transformers/trainer_callback.py", line 353, in on_train_begin return self.call_event("on_train_begin", args, state, control) File "/opt/conda/lib/python3.10/site-packages/transformers/trainer_callback.py", line 397, in call_event result = getattr(callback, event)( File "/opt/conda/lib/python3.10/site-packages/transformers/integrations.py", line 1355, in on_train_begin self.setup(args, state, model, tokenizer, **kwargs) File "/opt/conda/lib/python3.10/site-packages/transformers/integrations.py", line 1345, in setup self._clearml_task.connect(args, "Args") File "/opt/conda/lib/python3.10/site-packages/clearml/task.py", line 1480, in connect return method(mutable, name=name) File "/opt/conda/lib/python3.10/site-packages/clearml/task.py", line 3449, in _connect_object a_dict = self._connect_dictionary(a_dict, name) File "/opt/conda/lib/python3.10/site-packages/clearml/task.py", line 3413, in _connect_dictionary flat_dict = self._arguments.copy_to_dict(flat_dict, prefix=name) File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/args.py", line 508, in copy_to_dict self._task.set_parameter((prefix or '') + k, v) File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/task.py", line 1281, in set_parameter self._set_parameters( File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/task.py", line 1246, in _set_parameters description=create_description(), File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/task.py", line 1237, in create_description created_description += "Values:\n" + ",\n".join( TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'

  
  
Posted 2 years ago
Votes Newest

Answers 62


i believe this is because of transformer’s integration:

Automatic ClearML logging enabled.
ClearML Task has been initialized.

when a task already exists

  
  
Posted 2 years ago

@<1523701435869433856:profile|SmugDolphin23> @<1523701087100473344:profile|SuccessfulKoala55> Yes, the second issue still consists, currently breaking our pipeline

  
  
Posted 2 years ago

Yes, and the old version only works without the patch.
I see the model on the artifacts tab, but it's not actually uploaded.

  
  
Posted 2 years ago

Traceback (most recent call last):
  File "/tmp/tmpxlf2zxb9.py", line 31, in <module>
    kwargs[k] = parent_task.get_parameters(cast=True)[return_section + '/' + artifact_name]
KeyError: 'return/return_object'
Setting pipeline controller Task as failed (due to failed steps) !
Traceback (most recent call last):
  File "/usr/src/lib/clearml_test.py", line 69, in <module>
    pipeline()
  File "/opt/conda/lib/python3.10/site-packages/clearml/automation/controller.py", line 3914, in internal_decorator
    raise triggered_exception
  File "/opt/conda/lib/python3.10/site-packages/clearml/automation/controller.py", line 3891, in internal_decorator
    LazyEvalWrapper.trigger_all_remote_references()
  File "/opt/conda/lib/python3.10/site-packages/clearml/utilities/proxy_object.py", line 392, in trigger_all_remote_references
    func()
  File "/opt/conda/lib/python3.10/site-packages/clearml/automation/controller.py", line 3592, in results_reference
    raise ValueError(
ValueError: Pipeline step "second_step", Task ID=94a133dd0325425ab162467146482121 failed
  
  
Posted 2 years ago

SmugDolphin23 SuccessfulKoala55 ^

  
  
Posted 2 years ago

It should, but please check first. This is some code I quickly made for myself. It did make tests for it, but it would be nice to hear from someone else that it worked (as evidenced by the error above 😅 )

  
  
Posted 2 years ago

Thanks! I'm checking now, but might take a little (meeting in between)

  
  
Posted 2 years ago

hi, yes we tried with the same result

  
  
Posted 2 years ago

that makes more sense 🙂
would this work now as a workaround until the version is released?

  
  
Posted 2 years ago

I'm getting really weird behavior now, the task seems to report correctly with the patch... but the step doesn't say "uploading" when finished... there is a "return" artifact but it doesn't exist on S3 (our file server configuration)

  
  
Posted 2 years ago

tnx! keep me posted

  
  
Posted 2 years ago

@<1523701118159294464:profile|ExasperatedCrab78>
Hey again 🙂
I believe that the transformers patch wasn’t released yet right? we are getting into a problem where we need new features from transformers but can’t use because of this

  
  
Posted 2 years ago

I am currently on vacation, I'll ask my team mates. But if not I'll get to it next week

  
  
Posted 2 years ago

Now worries! Just so I understand fully though: you were already using the patch with success from my branch. Now that it has been merged into transformers main branch you installed it from there and that's when you started having issues with not saving models? Then installing transformers 4.21.3 fixes it (which should have the old clearml integration even before the patch?)

  
  
Posted 2 years ago

` from clearml.automation import PipelineDecorator
from clearml import TaskTypes

@PipelineDecorator.component(task_type=TaskTypes.data_processing, cache=True)
def run_demo():
from transformers import AutoTokenizer, DataCollatorForTokenClassification, AutoModelForTokenClassification, TrainingArguments, Trainer
from datasets import load_dataset

dataset = load_dataset("conllpp")

model_checkpoint = 'bert-base-cased'
lr = 2e-5
num_train_epochs  = 5
weight_decay = 0.01
seed = 1234

ner_feature = dataset["train"].features["ner_tags"]
label_names = ner_feature.feature.names
id2label = {str(i): label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)

model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint,
    id2label=id2label,
    label2id=label2id,
)
trainer_args = TrainingArguments(
    './tmp',
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=lr,
    num_train_epochs=num_train_epochs,
    weight_decay=weight_decay,
    seed=seed,
    data_seed=seed,
    load_best_model_at_end=True,
)

trainer = Trainer(
    model=model,
    args=trainer_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
    data_collator=data_collator,
    tokenizer=tokenizer,
)
trainer.train()

@PipelineDecorator.pipeline(name="StuffToDelete", project=".Dev", version="0.0.2", pipeline_execution_queue="aws_cpu")
def pipeline():
run_demo()

if name == 'main':
PipelineDecorator.set_default_execution_queue("aws_cpu")

PipelineDecorator.run_locally()

pipeline() `

This isn’t a real working example, but it shows that on clearml 1.7.2 it passed initialization part (and has an error on training stuff which is ok)

And on 1.9.0 it errors before on
TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'

  
  
Posted 2 years ago

Hey @<1523701949617147904:profile|PricklyRaven28> I'm checking! Have you updated anything else and on which exact commit of transformers are you now?

  
  
Posted 2 years ago

of course

  
  
Posted 2 years ago

confirming that only downgrading to transformers==4.21.3 without the patch worked....
This is a time bomb that eventually we won't be able to ignore... we will need to use new transformers code

  
  
Posted 2 years ago

S3 as it should be

  
  
Posted 2 years ago

thank Lior

  
  
Posted 2 years ago

yeah, it gets to that error because the previous issue is saved…i’ll try to work on a new example

  
  
Posted 2 years ago

sounds good 🙂 I’ll soon check if this fixes our issue and update you

  
  
Posted 2 years ago

Hi @<1523701949617147904:profile|PricklyRaven28> just letting you know I still have this on my TODO, I'll update you as soon as I have something!

  
  
Posted 2 years ago

i’ll try to work on something that works on 1.7.2

  
  
Posted 2 years ago

I tried to work on a reproducible script but then i get errors that my clearml task is already initialized (also doesn’t happen on 1.7.2)

  
  
Posted 2 years ago

Hi @<1523701949617147904:profile|PricklyRaven28> sorry that this is happening. I tried to run your minimal example, but get a IndexError: Invalid key: 5872 is out of bounds for size 0 error. That said, I get the same error without the code running in a pipeline. There seems to be no difference between simply running the code and the pipeline (for me). Do you have an updated example, maybe also including getting a local copy of an artifact, so I can check?

  
  
Posted 2 years ago

Damn it, you're right 😅

        # Allow ClearML access to the training args and allow it to override the arguments for remote execution
        args_class = type(training_args)
        args, changed_keys = cast_keys_to_string(training_args.to_dict())
        Task.current_task().connect(args)
        training_args = args_class(**cast_keys_back(args, changed_keys)[0])
  
  
Posted 2 years ago

@<1523701949617147904:profile|PricklyRaven28> Please use this patch instead of the one previously shared. It excludes the dict hack :)

  
  
Posted 2 years ago

in the meantime, we should have fixed this. I will ping you when 1.9.1 is out to try it out!

  
  
Posted 2 years ago

It's been accepted in master, but was not released yet indeed!

As for the other issue, it seems like we won't be adding support for non-string dict keys anytime soon. I'm thinking of adding a specific example/tutorial on how to work with Huggingface + ClearML so people can do it themselves.

For now (using the patch) the only thing you need to be careful about is to not connect a dict or object with ints as keys. If you do need to (e.g. ususally huggingface models need the id2label dict somewhere) just make sure to cast it to string before connecting it to ClearML and casting it back to int directly after. So that when ClearML changes the value, it's properly taken care of 🙂 My previous sample code is still valid!

  
  
Posted 2 years ago
170K Views
62 Answers
2 years ago
2 years ago
Tags
Similar posts