Examples: query, "exact match", wildcard*, wild?ard, wild*rd
Fuzzy search: cake~ (finds cakes, bake)
Term boost: "red velvet"^4, chocolate^2
Field grouping: tags:(+work -"fun-stuff")
Escaping: Escape characters +-&|!(){}[]^"~*?:\ with \, e.g. \+
Range search: properties.timestamp:[1587729413488 TO *] (inclusive), properties.title:{A TO Z}(excluding A and Z)
Combinations: chocolate AND vanilla, chocolate OR vanilla, (chocolate OR vanilla) NOT "vanilla pudding"
Field search: properties.title:"The Title" AND text
Answered
Hey, We Are Using Clearml 1.9.0 With Transformers 4.25.1… And We Started Getting Errors That Do Not Reproduce In Earlier Versions (Only Works In 1.7.2 All 1.8.X Don’T Work):

Hey,
We are using clearml 1.9.0 with transformers 4.25.1… and we started getting errors that do not reproduce in earlier versions (only works in 1.7.2 all 1.8.x don’t work):

File "/tmp/tmp0you5mai.py", line 29, in train_entity_exraction_model train(source=source_path.absolute(), output=model_output_path.absolute(), seed=seed, **entity_extraction_trainer) File "/usr/src/lib/entity_extractions/train.py", line 74, in train trainer.train() File "/opt/conda/lib/python3.10/site-packages/transformers/trainer.py", line 1527, in train return inner_training_loop( File "/opt/conda/lib/python3.10/site-packages/transformers/trainer.py", line 1704, in _inner_training_loop self.control = self.callback_handler.on_train_begin(args, self.state, self.control) File "/opt/conda/lib/python3.10/site-packages/transformers/trainer_callback.py", line 353, in on_train_begin return self.call_event("on_train_begin", args, state, control) File "/opt/conda/lib/python3.10/site-packages/transformers/trainer_callback.py", line 397, in call_event result = getattr(callback, event)( File "/opt/conda/lib/python3.10/site-packages/transformers/integrations.py", line 1355, in on_train_begin self.setup(args, state, model, tokenizer, **kwargs) File "/opt/conda/lib/python3.10/site-packages/transformers/integrations.py", line 1345, in setup self._clearml_task.connect(args, "Args") File "/opt/conda/lib/python3.10/site-packages/clearml/task.py", line 1480, in connect return method(mutable, name=name) File "/opt/conda/lib/python3.10/site-packages/clearml/task.py", line 3449, in _connect_object a_dict = self._connect_dictionary(a_dict, name) File "/opt/conda/lib/python3.10/site-packages/clearml/task.py", line 3413, in _connect_dictionary flat_dict = self._arguments.copy_to_dict(flat_dict, prefix=name) File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/args.py", line 508, in copy_to_dict self._task.set_parameter((prefix or '') + k, v) File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/task.py", line 1281, in set_parameter self._set_parameters( File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/task.py", line 1246, in _set_parameters description=create_description(), File "/opt/conda/lib/python3.10/site-packages/clearml/backend_interface/task/task.py", line 1237, in create_description created_description += "Values:\n" + ",\n".join( TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'

  
  
Posted one year ago
Votes Newest

Answers 62


Allright, a bit of searching later and I've found 2 things:

  • You were right about the task! I've staged a fix here . It basically detects whether a task is already running (e.g. from the pipelinedecorator component) and if so, uses that task instead. We should probably do this for all of our integrations.
  • But then I found another bug. Basically the pipeline decorator task would mess up the internal nested dict of the label mapping inside of the model config. You will probably have the same issue if you run the pipeline with my fix above.
    So for now, we're looking into the 2nd bug, because it breaks with Hugging Face models in a pipeline. Until we sort that out, I'm going to hold off on opening a PR to HF with the first fix. Makes sense?

Thanks a lot for the example, it helped tons to be able to reproduce!

  
  
Posted one year ago

Thanks! I'm checking now, but might take a little (meeting in between)

  
  
Posted one year ago

i believe this is because of transformer’s integration:

Automatic ClearML logging enabled.
ClearML Task has been initialized.

when a task already exists

  
  
Posted one year ago

Traceback (most recent call last):
  File "/tmp/tmpxlf2zxb9.py", line 31, in <module>
    kwargs[k] = parent_task.get_parameters(cast=True)[return_section + '/' + artifact_name]
KeyError: 'return/return_object'
Setting pipeline controller Task as failed (due to failed steps) !
Traceback (most recent call last):
  File "/usr/src/lib/clearml_test.py", line 69, in <module>
    pipeline()
  File "/opt/conda/lib/python3.10/site-packages/clearml/automation/controller.py", line 3914, in internal_decorator
    raise triggered_exception
  File "/opt/conda/lib/python3.10/site-packages/clearml/automation/controller.py", line 3891, in internal_decorator
    LazyEvalWrapper.trigger_all_remote_references()
  File "/opt/conda/lib/python3.10/site-packages/clearml/utilities/proxy_object.py", line 392, in trigger_all_remote_references
    func()
  File "/opt/conda/lib/python3.10/site-packages/clearml/automation/controller.py", line 3592, in results_reference
    raise ValueError(
ValueError: Pipeline step "second_step", Task ID=94a133dd0325425ab162467146482121 failed
  
  
Posted one year ago

@<1523701118159294464:profile|ExasperatedCrab78>
Here is an example that reproduces the second error

from clearml.automation import PipelineDecorator
from clearml import TaskTypes

@PipelineDecorator.component(task_type=TaskTypes.data_processing, cache=True)
def run_demo():
    from transformers import AutoTokenizer, DataCollatorForTokenClassification, AutoModelForSequenceClassification, TrainingArguments, Trainer
    from datasets import load_dataset
    import numpy as np
    import evaluate
    from pathlib import Path

    dataset = load_dataset("yelp_review_full")

    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")


    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True)
    
    
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        predictions = np.argmax(logits, axis=-1)
        return metric.compute(predictions=predictions, references=labels)

    
    small_train_dataset = dataset["train"].shuffle(seed=42).select(range(10))
    small_eval_dataset = dataset["test"].shuffle(seed=42).select(range(10))
    
    small_train_dataset = small_train_dataset.map(tokenize_function, batched=True)
    small_eval_dataset = small_eval_dataset.map(tokenize_function, batched=True)

    model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

    training_args = TrainingArguments(
        output_dir="test_trainer", 
        evaluation_strategy="epoch",
        # num_train_epoch=1,
    )
    
    metric = evaluate.load("accuracy")
    
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=small_train_dataset,
        eval_dataset=small_eval_dataset,
        compute_metrics=compute_metrics,
    )
    
    trainer.train()
    
    return Path('test_trainer')

@PipelineDecorator.component(task_type=TaskTypes.data_processing, cache=True)
def second_step(some_param):
    print("Success!")
    
@PipelineDecorator.pipeline(name="StuffToDelete", project=".Dev", version="0.0.2", pipeline_execution_queue="aws_cpu")
def pipeline():
    data = run_demo()
    second_step(data)

if __name__ == '__main__':
    PipelineDecorator.set_default_execution_queue("aws_cpu")
    
    PipelineDecorator.run_locally()
    
    pipeline()
  
  
Posted one year ago

No worries! And thanks for putting in the time.

  
  
Posted one year ago

yeah, it gets to that error because the previous issue is saved…i’ll try to work on a new example

  
  
Posted one year ago

Hi @<1523701949617147904:profile|PricklyRaven28> sorry that this is happening. I tried to run your minimal example, but get a IndexError: Invalid key: 5872 is out of bounds for size 0 error. That said, I get the same error without the code running in a pipeline. There seems to be no difference between simply running the code and the pipeline (for me). Do you have an updated example, maybe also including getting a local copy of an artifact, so I can check?

  
  
Posted one year ago

i believe this is because of this code
None

Which initialized the task if clearml is installed… but a task already exists (because of the pipeline), it will replace it

  
  
Posted one year ago

This is the next step not being able to find the output of the last step

ValueError: Could not retrieve a local copy of artifact return_object, failed downloading 
  
  
Posted one year ago

@<1523701435869433856:profile|SmugDolphin23> @<1523701087100473344:profile|SuccessfulKoala55> Yes, the second issue still consists, currently breaking our pipeline

  
  
Posted one year ago

Looks like the first issue has been solved 🙂

i think the second one still consists, still checking

  
  
Posted one year ago

will check

  
  
Posted one year ago

The version is v1.9.1

  
  
Posted one year ago

Hi @<1523701949617147904:profile|PricklyRaven28> ! We released ClearmlSDK 1.9.1 yesterday. Can you please try it?

  
  
Posted one year ago

@<1523701435869433856:profile|SmugDolphin23>
Hey 🙂
Any update?

We are having more issues with transformers and clearml in their new version.
The step that has transformers 4.25.1 isn’t able to upload artifacts.
If we downgrade transformers==4.21.3 it works

  
  
Posted one year ago

tnx! keep me posted

  
  
Posted one year ago

in the meantime, we should have fixed this. I will ping you when 1.9.1 is out to try it out!

  
  
Posted one year ago

thank Lior

  
  
Posted one year ago

SmugDolphin23 SuccessfulKoala55 ^

  
  
Posted one year ago

` from clearml.automation import PipelineDecorator
from clearml import TaskTypes

@PipelineDecorator.component(task_type=TaskTypes.data_processing, cache=True)
def run_demo():
from transformers import AutoTokenizer, DataCollatorForTokenClassification, AutoModelForTokenClassification, TrainingArguments, Trainer
from datasets import load_dataset

dataset = load_dataset("conllpp")

model_checkpoint = 'bert-base-cased'
lr = 2e-5
num_train_epochs  = 5
weight_decay = 0.01
seed = 1234

ner_feature = dataset["train"].features["ner_tags"]
label_names = ner_feature.feature.names
id2label = {str(i): label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)

model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint,
    id2label=id2label,
    label2id=label2id,
)
trainer_args = TrainingArguments(
    './tmp',
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=lr,
    num_train_epochs=num_train_epochs,
    weight_decay=weight_decay,
    seed=seed,
    data_seed=seed,
    load_best_model_at_end=True,
)

trainer = Trainer(
    model=model,
    args=trainer_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
    data_collator=data_collator,
    tokenizer=tokenizer,
)
trainer.train()

@PipelineDecorator.pipeline(name="StuffToDelete", project=".Dev", version="0.0.2", pipeline_execution_queue="aws_cpu")
def pipeline():
run_demo()

if name == 'main':
PipelineDecorator.set_default_execution_queue("aws_cpu")

PipelineDecorator.run_locally()

pipeline() `

This isn’t a real working example, but it shows that on clearml 1.7.2 it passed initialization part (and has an error on training stuff which is ok)

And on 1.9.0 it errors before on
TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'

  
  
Posted one year ago

SmugDolphin23 BTW, this is using clearml and huggingface’s automatic logging… didn’t log something manual

  
  
Posted one year ago

i’ll try to work on something that works on 1.7.2

  
  
Posted one year ago

I tried to work on a reproducible script but then i get errors that my clearml task is already initialized (also doesn’t happen on 1.7.2)

  
  
Posted one year ago

Hi PricklyRaven28 ! What dict do you connect? Do you have a small script we could use to reproduce?

  
  
Posted one year ago

of course

  
  
Posted one year ago

for now we downgraded to 1.7.2, but of course prefer not to stay that way

  
  
Posted one year ago

We'll check it out 👍

  
  
Posted one year ago

BTW the code above is from clearml github so it’s the latest

  
  
Posted one year ago

hi, yes we tried with the same result

  
  
Posted one year ago
49K Views
62 Answers
one year ago
one year ago
Tags
Similar posts